研究生: |
莊維釗 |
---|---|
論文名稱: |
45度斜角平行四邊形平滑壁面雙通道之流場與熱傳數值模擬 Numerical Simulation of Fluid Flow and Heat Transfer in Two-Pass Smooth-Wall Parallelogram Channels with 45-deg Inclined Angle |
指導教授: |
劉通敏
張始偉 |
口試委員: |
黃耀新
黃柏文 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 120 |
中文關鍵詞: | 平行四邊形雙通道 、流場 、熱傳 、數值模擬 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本數值研究模擬45°斜角平行四邊形平滑壁面雙通道之穩態流場與溫度場,流場型態包含層流場與紊流場。數值方法為有限體積法,對流項的空間離散採用二階上風法,擴散項的空間離散採用中央差分法,並且使用耦合求解器求解。
層流場模擬定雷諾數(Re=350)與定熱通量之條件,比較平行四邊形(AR=1/1)與方形雙通道之流場結構與熱傳性能之差異,結果顯示平行四邊形雙通道之定流量平均紐森數((Nu) ̅)較方形雙通道之(Nu) ̅高8.6%,而其范寧摩擦因子(f)較方形雙通道之f值低59%,故在定泵功率條件下,平行四邊形雙通道之熱性能係數(TPF)較方形雙通道之TPF高48%,證明平行四邊形雙通道較方形雙通道具有較佳之熱傳性能。另外,分析通道邊長比(AR)對平行四邊形雙通道的流場結構與熱傳性能之影響。研究分析通道之邊長比包含:1/1、1/2、1/4、2/1和4/1。研究結果顯示AR=1/1和AR=2/1能提供較佳之熱傳性能。
平行四邊形(AR=1/1)雙通道於Re=10000之紊流場模擬分析,分別使用k-ε、k-ω及SST三種不同紊流模式進行模擬。模擬結果與實驗數據驗證,探討不同紊流模式對模擬結果之影響。結果發現,三種紊流模式中以SST較接近實驗結果,而k-ε則與實驗數據相差甚大。
Al-Qahtani, M., Jang, Y. J., Chen, H. C., and Han, J. C. (2002). Flow and Heat Transfer in Rotating Two-Pass Rectangular Channels (AR=2) by Reynolds Stress Turbulence Model, International Journal of Heat and Mass Transfer, Vol. 45, p. 1823–1838.
ANSYS, Inc. (2011). ANSYS User Guide.
Azad, G. M. S., Uddin, M. J., Han, J. C., Moon, H. K., and Glezer, B. (2001). Rotating Heat Transfer in Two-Pass Rectangular Channels with 45° Parallel and Crossed Rib Turbulators, ASME Paper 2001-GT-186.
Bankston, C. A., and McEligot, D. M. (1970). Turbulent and Laminar Heat Transfer to Gases with Varying Properties in the Entry Region of Circular Ducts, Int. J. Heat Mass Transfer, Vol. 13, p. 319-334.
Bejan A. (2004). Convection Heat Transfer, Third Edition.
Bonho, B., Tomm, U., Johnson, B. V., and Jennions, I. (1997). Heat Transfer Predictions for Rotating U-Shaped Coolant Channels with Skewed Ribs and with Smooth Walls. ASME Paper 97-GT-162.
Chang, S. W., Liou, T. M., and Lee, T. H. (2012). Thermal Performance of Developing Flow in a Radially Rotating Parallelogram Channel with 45° Ribs, International Journal of Thermal Sciences, Vol. 52, p. 186-204.
Chen, H. C., Jang, Y. J., and Han, J. C. (2000). Computation of Heat Transfer in Rotating Two-Pass Square Channels by a Second-Moment Closure Model, International Journal of Heat and Mass Transfer, Vol. 43, p. 1603-1616.
Chu, K. C. (2012). 應用質點影像測速技術量測具180度銳轉之平行四邊形截面平滑雙通道流場特性及探討其與壁面熱傳之關係,國立清華大學,碩士論文。
Ciofalo, M., and Collins, M. W. (1989). k-ε Predictions of Heat Transfer in Turbulent Recirculating Flows Using an Improved Wall Treatment, Numerical Heat Transfer, Vol. 15, p. 21-47.
Dutta, S., and Han, J. C. (1996). Local Heat Transfer in a Rotating Two-Pass Ribbed Triangular Duct with Two Model Orientations, Int. J. Heat Mass Transfer, Vol. 39, p. 707-715.
EG&G Technical Services, Inc. (2004). Fuel Cell Handbook, Seventh Edition, Morgantown, West Virginia.
Elfert, M., Schroll, M., and Förster, W. (2012). PIV Measurement of Secondary Flow in a Rotating Two-Pass Cooling System with an Improved Sequencer Technique, Journal of Turbomachinery, Vol. 134, 031001-1-031001-12.
Fu, W. L. (2005). Aspect Ratio Effect on Heat Transfer in Rotating Two-Pass Rectangular Channels with Smooth Walls and Ribbed Walls, Ph.D. Thesis, Texas A&M University.
Fu, W. L., Wright, L., and Han, J. C. (2004). Heat Transfer in Two-Pass Rotating Rectangular Channels (AR = 1:2 and AR = 1:4) with 45° Angled Rib Turbulators, ASME Paper GT2004-53261.
Han, J. C., and Wright, L. M. (2006). Enhanced Internal Cooling of Turbine Blades and Vanes, The Gas Turbine Handbook, National Energy Technology Laboratory.
Hornbeck, R. W. (1965). An All-Numerical Method for Heat Transfer in the Inlet of a Tube, ASME Paper 65-WA/HT-36.
Iacovides, H., Kounadis, D., and Xu, Z. (2009). Experimental Study of Thermal Development in a Rotating Square-Ended U-Bend, Experimental Thermal and Fluid Science, Vol. 33, p. 482-494.
Kumar, A., and Reddy, R. G. (2003). Effect of Channel Dimensions and Shape in the Flow-Field Distributor on the Performance of Polymer Electrolyte Membrane Fuel Cells, Journal of Power Sources, Vol. 113, p. 11–18.
Launder, B. E., and Spalding, D. B. (1974). The Numerical Computation of Turbulent Flows, Computer Methods in Applied Mechanics and Engineering, Vol. 3, p. 269-289.
Lin, Y. L., Shih, T. I. P., Stephens, M. A., and Chyu, M. K. (2001). A Numerical Study of Flow and Heat Transfer in a Smooth and Ribbed U-Duct With and Without Rotation, Journal of Heat Transfer, Vol. 123, 219-232.
Liou, T. M., Chang, S. W., Chan, S. P., Liou, Y. S., and Chu, K. C. (2013). Flow Visualization and PIV Measurements in a Two-Pass Smooth-Wall Parallelogram Channel, The 9th Pacific Symposium On Flow Visualization and Image Processing, Busan, Korea.
Liou, T. M., Chang, S. W., Yang, C. C., and Lan, Y. A. (2014). Thermal Performance of a Radially Rotating Twin-Pass Smooth-Walled Parallelogram Channel, ASME Paper GT2014-25322.
Macfarlane, I., Joubert, P. N., and Nickels, T. B. (1998). Secondary Flows and Developing Turbulent Boundary Layers in a Rotating Duct, J. Fluid Mech., Vol. 373, p. 1-32.
Maharudrayya, S., Jayanti, S., and Deshpande, A. P. (2004). Pressure Losses in Laminar Flow Through Serpentine Channels in Fuel Cell Stacks, Journal of Power Sources, Vol. 138, p. 1–13.
Manohar, R. (1970-1972). Personal Communications, Dep. Math., University of Saskatchewan, Saskatoon.
Menter., F. R., (1994). Zonal Two Equation k-ω Turbulence Models for Aerodynamic Flows, AIAA Paper 93-2906.
Mochizuki, S., Murata, A., Shibata, R., and Yang, W. J. (1999). Detailed Measurements of Local Heat Transfer Coefficients in Turbulent Flow Through Smooth and Rib-Roughened Serpentine Passages with a 180° Sharp Bend, International Journal of Heat and Mass Transfer, Vol. 42, p. 1925-1934.
Moon, S. W., Endley, S., and Lau, S. C. (2002). Local Heat Transfer Distribution in a Two-Pass Trapezoidal Channel with a 180° Turn via the Transient Liquid Crystal Technique, Journal of Energy, Heat and Mass Transfer, Vol. 24, p. 103-121.
Munson, B. R., Young, D. F., Okiishi, T. H., and Huebbsch, W. W. (2010). Fundamentals of Fluid Mechanics, Sixth Edition.
Raisee, M., Alizadeh, M., and Iacovides, H. (2012). Computation of Developing Turbulent Flow and Heat Transfer in Stationary and Rotating Smooth Square Ducts, ASME Paper GT 2012-69374.
Schabacker, J., Bölcs, A., and Johnson, B. V. (1998). PIV Investigation of the Flow Characteristics in an Internal Coolant Passage with Two Ducts Connected by a Sharp 180º Bend, ASME Paper 98-GT-544.
Schabacker, J., Böelcs, A., and Johnson, B. V. (1999). PIV Investigation of the Flow Characteristics in an Internal Coolant Passage with 45deg Rib Arrangement, ASME Paper 99-GT-120.
Shah, R. K. (1975). Laminar Flow Friction and Forced Convection Heat Transfer in Ducts of Arbitrary Geometry, Int. J. Heat Mass Transfer, Vol. 18, p. 849-862.
Shah, R. K., and London, A. L. (1978). Laminar Flow Forced Convection in Ducts, Suppl. 1 to Advances in Heat Transfer, Academic Press, New York.
Son, S. Y., Kihm, K. D., and Han, J. C. (2002). PIV Flow Measurements for Heat Transfer Characterization in Two-Pass Square Channels with Smooth and 90° Ribbed Walls, International Journal of Heat and Mass Transfer, Vol. 45, p. 4809–4822.
Stephens, M. A., Shih, T. I. P., and Civinskas, K. C. (1996). Computations of Flow and Heat Transfer in a Rotating U-Shaped Square Duct with Smooth Walls, AIAA Paper 96-3161.
Su, G. (2005). Numerical Simulation of Flow and Heat Transfer of Internal Cooling Passage in Gas Turbine Blade, Ph.D. Thesis, Texas A&M University.
Su, G., Chen, H. C., Han, J. C., and Heidmann J. D. (2004). Computation of Flow and Heat Transfer in Rotating Two-Pass Rectangular Channels (AR = 1:1, 1:2, and 1:4) with Smooth Walls by a Reynolds Stress Turbulence Model, International Journal of Heat and Mass Transfer, Vol. 47, p. 5665–5683.
Sun, L., Oosthuizen, P. H., and McAuley, K. B. (2006). A Numerical Study of Channel-to-Channel Flow Cross-Over Through the Gas Diffusion Layer in a PEM-Fuel-Cell Flow System Using a Serpentine Channel with a Trapezoidal Cross-Sectional Shape, International Journal of Thermal Sciences, Vol. 45, p. 1021–1026.
Wagner, J. H., Johnson, B. V., and Hajek, T. J. (1991). Heat Transfer in Rotating Passages with Smooth Walls and Radial Outward Flow, ASME Journal of Turbomachinery, Vol. 113, p. 42-51.
Wagner, J. H., Johnson, B. V., and Kopper, F. C. (1991). Heat Transfer in Rotating Serpentine Passage with Smooth Walls, J. Turbomach., Vol. 113, p. 321-330.
Wibulswas, P. (1966). Laminar-Flow Heat-Transfer in Non-Circular Ducts, Ph.D. Thesis, London University, London.
Wilcox, D. C. (1993). Turbulence Modeling for CFD, La Canada, California, DCW Industries, Inc.