研究生: |
秦茂原 |
---|---|
論文名稱: |
An Efficient Algorithm for Weil/Tate Pairing Based on Radix 2^(2w)+1 Representation Weil/Tate Pairing 基於 Radix 2^(2w)+1 之快速演算法 |
指導教授: | 孫宏民 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 資訊系統與應用研究所 Institute of Information Systems and Applications |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 英文 |
論文頁數: | 43 |
中文關鍵詞: | 橢圓曲線密碼學 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Weil pairing 和 Tate pairing 在許多密碼應用上扮演重要的角
色,因此加速pairing運算成了有趣且重要的議題。近年來,有些應用
所使用的pairing 需要在characteristics大於4並且mod 3同餘2的
supersingular曲線上。目前卻很少有關於在這些曲線上改進效能的研
究。在這篇論文中,我們提供一個有效計算pairing的方法,並適合
characteristics為5的曲線。這個方法在其他characteristics時也有
傑出的效果。我們使用Markov模型分析效能,並且與其他現行的方法
做比較。
[1] P. Barreto, H.Y. Kim, B. Lynn, and M. Scott. Efficient algorithms for pairing-based
cryptosystems. Advances in Cryptology–Crypto, 2442:354–368, 2002.
[2] I.F. Blake, V. Kumar Murty, and G. Xu. Refinements of Miller’s algorithm for
computing the Weil/Tate pairing. Journal of Algorithms, 58(2):134–149, 2006.
[3] I.F. Blake, G. Seroussi, and N.P. Smart. Elliptic Curves in Cryptography. Cambridge
University Press, 1999.
[4] D. Boneh and M.K. Franklin. Identity-Based Encryption from the Weil Pairing.
Proceedings of the 21st Annual International Cryptology Conference on Advances
in Cryptology, pages 213–229, 2001.
[5] D. Boneh, E.J. Goh, and K. Nissim. Evaluating 2-DNF formulas on ciphertexts.
TCC, 3378:325–341, 2005.
[6] H. Cohen, G. Frey, and R. Avanzi. Handbook of Elliptic and Hyperelliptic Curve
Cryptography. CRC Press, 2006.
[7] S.D. Galbraith, K. Harrison, and D. Soldera. Implementing the Tate Pairing. Proceedings
of the 5th International Symposium on Algorithmic Number Theory, pages
324–337, 2002.
[8] I.N. Herstein. Topics in algebra. Xerox College Pub Lexington, Mass, 1975.
[9] A. Joux. A One Round Protocol for Tripartite Diffie-Hellman. Proceedings of the
4th International Symposium on Algorithmic Number Theory, pages 385–394, 2000.
[10] N. Koblitz. Elliptic curve cryptosystems. Mathematics of Computation,
48(177):203–209, 1987.
[11] S. Lang. Algebra. Springer, 2002.
[12] C.L. Liu, G. Horng, and T.Y. Chen. Further refinement of pairing computation
based on Millers algorithm. Applied Mathematics and Computation, 189(1):395–
409, 2007.
[13] AJ Menezes, T. Okamoto, and SA Vanstone. Reducing elliptic curve logarithms to
logarithms in a finite field. Information Theory, IEEE Transactions on, 39(5):1639–
1646, 1993.
[14] V. Miller. Short programs for functions on curves. Unpublished manuscript, 97:101–
102, 1986.
[15] J.H. Silverman. The Arithmetic of Elliptic Curves. Springer Verlag, 1986.
[16] W. Stallings. Cryptography and network security. Prentice Hall Upper Saddle River,
NJ.
[17] K. Wang and B. Li. Computation of Tate Pairing for Supersingular Curves over
characteristic 5 and 7.
[18] L.C. Washington. Elliptic Curves: Number Theory and Cryptography. CRC Press,
2003.
[19] T.Wu, H.Q. Du, M. Zhang, and R.B.Wang. Improved Algorithm of the Tate Pairing
in Characteristic Three. Data, Privacy, and E-Commerce, 2007. ISDPE 2007. The
First International Symposium on, pages 453–455, 2007.