簡易檢索 / 詳目顯示

研究生: 秦茂原
論文名稱: An Efficient Algorithm for Weil/Tate Pairing Based on Radix 2^(2w)+1 Representation
Weil/Tate Pairing 基於 Radix 2^(2w)+1 之快速演算法
指導教授: 孫宏民
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊系統與應用研究所
Institute of Information Systems and Applications
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 43
中文關鍵詞: 橢圓曲線密碼學
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Weil pairing 和 Tate pairing 在許多密碼應用上扮演重要的角
    色,因此加速pairing運算成了有趣且重要的議題。近年來,有些應用
    所使用的pairing 需要在characteristics大於4並且mod 3同餘2的
    supersingular曲線上。目前卻很少有關於在這些曲線上改進效能的研
    究。在這篇論文中,我們提供一個有效計算pairing的方法,並適合
    characteristics為5的曲線。這個方法在其他characteristics時也有
    傑出的效果。我們使用Markov模型分析效能,並且與其他現行的方法
    做比較。


    Table of Contents ........................................................................................................... I List of Figures ................................................................................................................ III List of Tables.................................................................................................................. IV Chapter 1 Introduction ................................................................................................ 1 Chapter 2 Mathematical Background ......................................................................... 3 2.1 Finite Fields .................................................................................................. 3 2.1.1 Groups........................................................................................... 3 2.1.2 Rings and Fields............................................................................ 4 2.2 Elliptic Curves .............................................................................................. 4 2.2.1 Elliptic Curves properties and group law...................................... 5 2.2.2 Order of Point and Elliptic Curves................................................ 9 2.3 Pairings ......................................................................................................... 9 2.3.1 Divisors ......................................................................................... 9 2.3.2 Weil/Tate Pairing........................................................................... 10 Chapter 3 Computation of Weil/Tate Pairing.............................................................. 13 3.1 Miller Algorithm........................................................................................... 13 3.2 BMX Algorithms .......................................................................................... 13 3.3 LHC Algorithm............................................................................................. 15 3.4 Wu’s Algorithm............................................................................................. 15 Chapter 4 Proposed Scheme ....................................................................................... 24 4.1 Main Idea of Scheme .................................................................................... 24 4.2 Rules, Representation of Lines and Segmentation Algorithm...................... 26 Chapter 5 Performance Evaluation ............................................................................. 35 Chapter 6 Conclusion.................................................................................................. 41

    [1] P. Barreto, H.Y. Kim, B. Lynn, and M. Scott. Efficient algorithms for pairing-based
    cryptosystems. Advances in Cryptology–Crypto, 2442:354–368, 2002.
    [2] I.F. Blake, V. Kumar Murty, and G. Xu. Refinements of Miller’s algorithm for
    computing the Weil/Tate pairing. Journal of Algorithms, 58(2):134–149, 2006.
    [3] I.F. Blake, G. Seroussi, and N.P. Smart. Elliptic Curves in Cryptography. Cambridge
    University Press, 1999.
    [4] D. Boneh and M.K. Franklin. Identity-Based Encryption from the Weil Pairing.
    Proceedings of the 21st Annual International Cryptology Conference on Advances
    in Cryptology, pages 213–229, 2001.
    [5] D. Boneh, E.J. Goh, and K. Nissim. Evaluating 2-DNF formulas on ciphertexts.
    TCC, 3378:325–341, 2005.
    [6] H. Cohen, G. Frey, and R. Avanzi. Handbook of Elliptic and Hyperelliptic Curve
    Cryptography. CRC Press, 2006.
    [7] S.D. Galbraith, K. Harrison, and D. Soldera. Implementing the Tate Pairing. Proceedings
    of the 5th International Symposium on Algorithmic Number Theory, pages
    324–337, 2002.
    [8] I.N. Herstein. Topics in algebra. Xerox College Pub Lexington, Mass, 1975.
    [9] A. Joux. A One Round Protocol for Tripartite Diffie-Hellman. Proceedings of the
    4th International Symposium on Algorithmic Number Theory, pages 385–394, 2000.
    [10] N. Koblitz. Elliptic curve cryptosystems. Mathematics of Computation,
    48(177):203–209, 1987.
    [11] S. Lang. Algebra. Springer, 2002.
    [12] C.L. Liu, G. Horng, and T.Y. Chen. Further refinement of pairing computation
    based on Millers algorithm. Applied Mathematics and Computation, 189(1):395–
    409, 2007.
    [13] AJ Menezes, T. Okamoto, and SA Vanstone. Reducing elliptic curve logarithms to
    logarithms in a finite field. Information Theory, IEEE Transactions on, 39(5):1639–
    1646, 1993.
    [14] V. Miller. Short programs for functions on curves. Unpublished manuscript, 97:101–
    102, 1986.
    [15] J.H. Silverman. The Arithmetic of Elliptic Curves. Springer Verlag, 1986.
    [16] W. Stallings. Cryptography and network security. Prentice Hall Upper Saddle River,
    NJ.
    [17] K. Wang and B. Li. Computation of Tate Pairing for Supersingular Curves over
    characteristic 5 and 7.
    [18] L.C. Washington. Elliptic Curves: Number Theory and Cryptography. CRC Press,
    2003.
    [19] T.Wu, H.Q. Du, M. Zhang, and R.B.Wang. Improved Algorithm of the Tate Pairing
    in Characteristic Three. Data, Privacy, and E-Commerce, 2007. ISDPE 2007. The
    First International Symposium on, pages 453–455, 2007.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE