簡易檢索 / 詳目顯示

研究生: 賴瑞陽
Lai, Jui-Yang
論文名稱: 以功能性生醫材料開發人類眼角膜內皮細胞層片之組織工程及其再生醫學之應用
Functional Biomaterials for Human Corneal Endothelial Cell Sheet Engineering and Regenerative Medicine
指導教授: 薛敬和
Hsiue, Ging-Ho
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 275
中文關鍵詞: 生醫材料細胞層片組織工程再生醫學感溫性聚異丙基丙烯醯胺接枝培養表面多功能性動物明膠傳輸載體人類眼角膜內皮層電漿化學眼科學移植
外文關鍵詞: Biomaterials, Cell sheet engineering, Regenerative medicine, Thermo-responsive poly(N-isopropylacrylamide)-grafted culture surface, Multi-functional gelatin carrier, Human corneal endothelium, Plasma chemistry, Ophthalmology, Transplantation
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於人類眼角膜內皮細胞在體內具有不會分化生長的特性,正常角膜內皮組織的細胞密度自出生後即不斷減少。當密度低於每平方毫米1000個細胞時,角膜內皮組織的排水生理功能將無法發揮,進而導致角膜水腫混濁及視覺喪失。在目前臨床上,全層角膜移植術為治療角膜內皮組織病變的主要方式。然而,捐贈角膜之來源不足與全層角膜移植的術後相關併發症仍是此法應用時必須克服之瓶頸。因此,以體外大量培養之人類眼角膜內皮細胞進行受損角膜內皮組織的單層置換乃一種極具潛力的替代方案。本研究之目的即是藉由製備與移植生醫工程的人類眼角膜內皮細胞層片,以開發一新穎性治療法進行眼組織重建。
    研究首先根據電漿化學反應設計一套兩階段的材料表面改質方法,以製備感溫性聚異丙基丙烯醯胺高分子接枝表面,並應用於人類眼角膜內皮細胞之培養。進一步藉由外界溫度改變所產生的熱刺激達到有效控制細胞於培養界面上之貼覆與分離。經由能量分散式X射線光譜學、霍氏全反射紅外線光譜學、原子力顯微鏡學及靜態接觸角量測等表面鑑定分析,聚異丙基丙烯醯胺高分子於材料表面之最佳接枝量為每平方公分1.6微克。此外,導入丙烯酸高分子鏈段作為材料接枝的間距分子將可有效加速細胞於培養表面的分離,並防止細胞因過度低溫處理而衍生之不良效應。
    接續探討以感溫性培養基材所製備之生醫工程人類眼角膜內皮細胞層片是否具有作為天然組織替代物之可行性。將來自眼庫捐贈組織的成體人類眼角膜內皮細胞在37°C下培養於感溫性高分子接枝表面。三週後,長滿之細胞可經由降溫至20°C而脫離培養表面,並獲得一層片狀組織。此生醫工程細胞層片的體外性質以存活率試驗、掃瞄式電子顯微鏡學、免疫組織化學及組織學進行評估。結果指出在與眼庫角膜內皮組織比較下,人類眼角膜內皮細胞層片於形態、結構、活性與功能等方面均有相似特徵,適合作為天然組織替代物。
    由於細胞層片組織相當柔軟易碎,本研究亦設計一多功能水膠載體傳輸系統,以進行生醫工程人類眼角膜內皮細胞層片之眼內移植應用。實驗採用不同等電點(5.0或9.0)及分子量(3至100 kDa)的動物明膠為原料,製備水膠載體並接受γ射線照射消毒。藉由機械性質、含水率、分解率與細胞相容性等測試進行各種水膠載體之功能性評估。結果顯示具有等電點5.0及分子量100 kDa的動物明膠最適合作為細胞層片移植治療之水膠載體與發展穩定的眼內傳輸系統。
    在體內試驗方面,本研究以兔子為動物實驗模式,進行生醫工程人類眼角膜內皮細胞層片之眼內移植治療可行性分析。經由臨床觀測與病理組織切片檢視,人類眼角膜內皮細胞層片在體內能夠順利貼覆結合於宿主病變組織上,並有效發揮其細胞特有生理功能。與僅製造眼角膜內皮傷口的對照組相較下,動物經植入細胞層片後,其受損角膜之病態水腫及其澄清度均可獲得大幅改善。此外,兔子眼角膜厚度幾乎恢復至原始狀態,也意謂著植入的細胞層片組織在體內確實能夠展現功能。這些實驗結果指出具有良好結構與功能之生醫工程細胞層片相當適合應用於眼角膜內皮組織修復。
    基於上述研究發現,利用感溫性培養界面與多功能水膠載體,以製備及移植生醫工程人類眼角膜內皮細胞層片,能夠建立一套角膜內皮細胞治療之新策略。此外,功能性生醫材料在人類眼角膜內皮細胞層片組織工程及其再生醫學之開發極具潛力。最後,本研究希望此細胞層片新療法未來能有效改善角膜內皮相關病變,並應用於眼組織再生重建與臨床工程。


    Human corneal endothelium in vivo demonstrates an age-related decrease in cell density and cannot be compensated due to its limited regenerative capacity. When the cell density is less than a critical level of 1000 cells/mm2, the endothelial monolayer no longer functions, causing corneal edema and loss of visual acuity. Penetrating keratoplasty (PK) is currently the common way to treat corneas that are opacified due to endothelial dysfunction. However, insufficient supplies of donor corneas and several complications associated with PK remain a worldwide problem. Therefore, transplantation of in vitro cultured human corneal endothelial cells (HCECs) to replace damaged corneal endothelium alone is a promising alternative to PK. In this study, we developed a novel therapy technique to fabricate and transplant cultured HCEC sheets for corneal endothelial reconstruction.
    On the basis of plasma chemistry, we have designed a two-step method to prepare a thermo-responsive poly(N-isopropylacrylamide) (PNIPAAm)-grafted culture surface for controlling HCEC adhesion and detachment via a thermal stimulus. The results of surface characterization including energy-dispersive X-ray spectroscopy (EDX), attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR), atomic force microscopy (AFM), and static contact angle measurements show that an optimal grafting amount of PNIPAAm is 1.6 μg/cm2. We have also demonstrated that the introduction of AAc segment as short spacers onto the culture support can accelerate the cell detachment, which is beneficial to protect these harvested cells from functional damage.
    We further investigated whether the bioengineered HCEC sheets harvested from thermo-responsive culture supports could be used as biological tissue equivalents. Untransformed adult HCECs derived from eye bank corneas were cultivated on PNIPAAm-grafted surfaces for 3 weeks at 37°C. Confluent cell cultures were detached as a laminated sheet by lowering culture temperature to 20°C. In vitro characteristics of HCEC sheets were evaluated by viability, scanning electron microscopy, immunohistochemistry, and histology. Similar to the native corneal endothelium from eye bank donors, the fabricated HCEC monolayers having normal morphology, structure and viability are suitable to be used as tissue replacements for transplantation.
    Because of the soft and fragile nature of bioengineered HCEC sheets, we have designed and developed a multi-functional hydrogel carrier system for intraocular delivery of these sheet grafts. The functionality of gamma-sterilized cell carriers made from raw gelatins with a different isoelectric point (IEP = 5.0 and 9.0) and a molecular weight (MW) range from 3 to 100 kDa, was investigated by the determination of mechanical properties, water content, dissolution degree, and cytocompatibility. The results of our study indicate that the gamma-sterilized hydrogel discs consisting of raw gelatins (IEP = 5.0, MW = 100 kDa) are promising candidates as cell sheet carriers for effective corneal endothelial cell transplantation and therapy.
    In the in vivo tests, we evaluated the feasibility of HCEC transplantation by harvesting the cell sheets from the thermo-responsive culture supports and delivering with multi-functional gelatin hydrogel discs in a rabbit model. We have shown that the transplanted HCEC sheets could be integrated into rabbit corneas denuded of endothelium. Additionally, when endothelium alone was removed, the rabbit corneas became cloudy and remained opaque throughout the course of the experiment. Once receiving tissue-engineered HCEC sheets, the corneas have returned to a nearly normal thickness. These results imply the biological function of transplanted cell sheets. Our findings indicated that a well-organized and functional HCEC sheet is feasible to be used as tissue equivalents for replacing compromised endothelium.
    In the present study, we have demonstrated that the bioengineered human corneal endothelium fabricated from thermo-responsive culture supports and delivered by multi-functional hydrogel carriers can potentially offer a new therapeutic strategy for corneal endothelial cell loss. In addition, functional biomaterials have great potential for development of HCEC sheet engineering and regenerative medicine in ophthalmology. We hope this work will lead to insights into cell sheet-based therapy for corneal endothelial dysfunction and will open an exciting new door to the future.

    TABLE OF CONTENTS ENGLISH ABSTRACT………………………………………………………I CHINESE ABSTRACT………………………………………………………IV DEDICATION……………………………………………………………VII ACKNOWLEDGMENTS……………………………………………………VIII TABLE OF CONTENTS………………………………………………………X LIST OF FIGURES……………………………………………………XVIII LIST OF TABLES……………………………………………………XXVIII CHAPTER 1 BACKGROUND AND LITERATURE REVIEW……………………1 1.1 Motivation and Objectives..............................2 1.2 Corneal Endothelium....................................5 1.2.1 Cornea...............................................5 1.2.2 Endothelium: Structure and Function..................7 1.2.3 Lack of Proliferation in the Endothelial Monolayer In Vivo......................................................11 1.2.3.1 The Decrease in Endothelial Cell Density: Age and Trauma....................................................11 1.2.3.2 Mechanisms for Inhibition of Cell Proliferation In Vivo......................................................13 1.2.3.3 Endothelial Monolayer Repair: Cell Enlargement and Migration.................................................15 1.2.3.4 Endothelial Dysfunction from Excessive Cell Loss..17 1.3 Corneal Endothelial Cell Therapy......................18 1.3.1 Penetrating Keratoplasty............................18 1.3.2 Keratoprosthesis....................................20 1.3.2.1 Before 1900.......................................22 1.3.2.2 1950s.............................................22 1.3.2.3 1960s.............................................23 1.3.2.4 1970s and 1980s...................................25 1.3.2.5 After 1990........................................25 1.3.3 Cell-Based Therapy..................................30 1.3.3.1 Injection of Isolated Cell Suspensions............30 1.3.3.2 Transplantation of Tissue-Engineered Constructs...31 1.4 Cell Sheet Engineering................................41 1.4.1 Tissue Engineering..................................41 1.4.2 Cell-Culture Substrate Interaction..................44 1.4.3 Fabrication of Tissue-Engineered Cell Sheets........46 1.4.4 Rapid Cell Detachment and Cell Sheet Transfer.......48 1.4.5 Biomedical Applications.............................50 1.5 Biomaterials..........................................57 1.5.1 Poly(N-isopropylacrylamide).........................57 1.5.2 Thermo-Responsive Culture Support...................60 1.5.3 Gelatin.............................................63 1.5.4 Biofunctional Hydrogel Carrier System...............65 1.6 Dissertation Layouts..................................68 CHAPTER 2 THERMO-RESPONSIVE POLY(N-ISOPROPYLACRYLAMIDE)(PNIPAAM)-GRAFTED CULTURE SURFACES FOR CONTROLLING CELL ADHESION AND DETACHMENT……………………………………………70 2.1 Introduction..........................................71 2.2 Experimental..........................................77 2.2.1 Materials...........................................77 2.2.2 Preparation of Thermo-Responsive Culture Substrates.78 2.2.2.1 Glow Discharge....................................78 2.2.2.2 PAAc-g-PE Surfaces: Thermal Graft Polymerization..79 2.2.2.3 PNIPAAm-g-PAAc-g-PE Surfaces: Photografting Polymerization............................................80 2.2.3 Surface Characterization............................81 2.2.3.1 Peroxide Determination............................81 2.2.3.2 Attenuated Totoal Reflection-Fourier Transform Infrared Spectroscopy.....................................81 2.2.3.3 Energy-Dispersive X-Ray Spectroscopy..............81 2.2.3.4 Atomic Force Microscopy...........................82 2.2.3.5 Static Contact Angle Measurements.................82 2.2.4 Cell Resource.......................................82 2.2.5 Cell Adhesion/Detachment Assay......................83 2.3 Results and Discussion................................84 2.3.1 Peroxide Determination..............................84 2.3.2 PAAc-g-PE Surfaces: Thermal Graft Polymerization....85 2.3.3 PNIPAAm-g-PAAc-g-PE Surfaces: Photografting Polymerization............................................89 2.3.3.1 Attenuated Totoal Reflection-Fourier Transform Infrared Spectroscopy.....................................89 2.3.3.2 Energy-Dispersive X-Ray Spectroscopy..............89 2.3.3.3 Atomic Force Microscopy...........................91 2.3.3.4 Static Contact Angle Measurements.................93 2.3.4 Cell Adhesion/Detachment Assay......................94 2.4 Conclusions...........................................99 CHAPTER 3 BIOENGINEERED HUMAN CORNEAL ENDOTHELIAL CELL (HCEC) SHEETS AS FUNCTIONAL TISSUE EQUIVALENTS……………101 3.1 Introduction.........................................102 3.2 Experimental.........................................107 3.2.1 Materials..........................................107 3.2.2 Cell Preparation...................................108 3.2.3 Harvest of HCEC Monolayers from Thermo-Responsive Culture Supports.........................................109 3.2.4 Viability Bioassay.................................110 3.2.5 Scanning Electron Microscopy.......................111 3.2.6 Immunohistochemistry...............................111 3.2.7 Histology..........................................112 3.3 Results and Discussion...............................113 3.3.1 Cell Preparation...................................113 3.3.2 Harvest of HCEC Monolayers from Thermo-Responsive Culture Supports.........................................117 3.3.3 Viability Bioassay.................................121 3.3.4 Scanning Electron Microscopy.......................124 3.3.5 Immunohistochemistry...............................126 3.3.6 Histology..........................................128 3.4 Conclusions..........................................130 CHAPTER 4 MULTI-FUNCTIONAL GELATIN HYDROGEL CARRIERS FOR INTRAOCULAR DELIVERY OF HUMAN CORNEAL ENDOTHELIAL CELL (HCEC) SHEET GRAFTS…………………………………………………132 4.1 Introduction.........................................133 4.2 Experimental.........................................137 4.2.1 Materials..........................................137 4.2.2 Preparation of Gelatin Hydrogel Discs..............139 4.2.3 Tensile Tests......................................139 4.2.4 Determination of Water Content and Dissolution Degree...................................................140 4.2.5 Cell Culture.......................................141 4.2.6 Cell Proliferation Assay...........................141 4.2.7 Cell Viability Assay...............................142 4.2.8 Cytokine Expression................................143 4.2.9 Gelatin Carriers for Cell Sheet Delivery...........144 4.2.10 Statistical Analysis..............................146 4.3 Results and Discussion...............................147 4.3.1 Tensile Tests......................................147 4.3.2 Determination of Water Content and Dissolution Degree...................................................148 4.3.3 Cell Proliferation Assay...........................151 4.3.4 Cell Viability Assay...............................156 4.3.5 Cytokine Expression................................159 4.3.6 Gelatin Carriers for Cell Sheet Delivery...........159 4.4 Conclusions..........................................164 CHAPTER 5 HUMAN CORNEAL ENDOTHELIAL CELL (HCEC) SHEET TRANSPLANTATION FOR OCULAR RECONSTRUCTION……………………167 5.1 Introduction.........................................168 5.2 Experimental.........................................171 5.2.1 Materials..........................................171 5.2.2 HCEC Cultivation...................................172 5.2.3 PKH26 Labeling of Cultivated HCECs.................173 5.2.4 Cultivation and Harvest of HCEC Sheets from Thermo-Responsive Culture Surfaces..............................173 5.2.5 Electron Microscopy................................174 5.2.6 Western Blot Analyses of Na+/K+-ATPase and ZO-1....175 5.2.7 Preparation and Characterization of Gelatin Discs..175 5.2.8 Establishment of Corneal Endothelium Trauma Model of Rabbits..................................................176 5.2.9 Transplantation of HCEC Monolayers Using Gelatin Discs as Carriers........................................177 5.2.10 Histological Examination and Localization of HCECs....................................................178 5.3 Results and Discussion...............................179 5.3.1 Cultivation of PKH26 Labeled HCECs on PNIPAAm-Grafted Surfaces.................................................179 5.3.2 Detachment of HCEC Monolayers from PNIPAAm-Grafted Surfaces.................................................180 5.3.3 Electron Microscopy................................180 5.3.4 Western Blot Analyses of Na+/K+-ATPase and ZO-1....183 5.3.5 Delivery of HCEC Monolayers by Gelatin Discs.......185 5.3.6 Clinical Observations of the Surgical Corneas......188 5.3.7 Central Corneal Thickness Measurements.............188 5.3.8 Histological Examination and Localization of HCECs.189 5.4 Conclusions..........................................198 CHAPTER 6 SUMMARY AND FUTURE DIRECTIONS………………………200 REFERENCES……………………………………………………………205 BIBLIOGRAPHY…………………………………………………………231 LIST OF FIGURES Figure 1.1 A novel strategy for corneal endothelial reconstruction with bioengineered cell sheets by utilizing functional biomedical materials............................4 Figure 1.2 Diagrammatic horizontal cross-section of a vertebrate eye.............................................6 Figure 1.3 Schematic transverse section of the cornea......7 Figure 1.4 Schematic illustration of the fine structure of human corneal.endothelium..................................9 Figure 1.5 Corneal endothelial barrier and pump function..11 Figure 1.6 Age-related decrease in corneal endothelial cell density in 56 pre- and postnatal samples, ranging in age from 16 weeks of gestation to 98 years old................12 Figure 1.7 The average cell density of human corneal endothelium at different stages of lifespan...............13 Figure 1.8 Mechanisms for inhibition of corneal endothelial cell proliferation in vivo................................14 Figure 1.9 Schematic illustration of altered corneal endothelial cell shape (A) and different corneal endothelial cell density (B)..............................16 Figure 1.10 Schematic illustration of penetrating keratoplasty..............................................19 Figure 1.11 Schematic illustration of the experimental keratoprosthesis design...................................21 Figure 1.12 Schematic illustration of implantation of keratoprosthesis..........................................21 Figure 1.13 Schematic illustration of Cardona “through-and-through” keratoprosthesis................................24 Figure 1.14 Schematic illustration of Girard keratoprosthesis..........................................24 Figure 1.15 Schematic illustration of a homobifunctional SR membrane..................................................27 Figure 1.16 Schematic illustration for biofunction of a heterobifunctional membrane...............................28 Figure 1.17 Cross-sectional view of preparation of a heterobifunctional membrane...............................29 Figure 1.18 Injection of 5 × 105 cells into the anterior chamber of an eye which has had the corneal endothelium chemically destroyed with benzalkonium chloride...........31 Figure 1.19 A button seeded with a suspension of corneal endothelial cells from tissue culture can be used as the donor source for standard PK..............................32 Figure 1.20 Flow diagram illustrating the procedures used to produce donor corneas with either full human endothelial cell enhancement or replacement...........................34 Figure 1.21 A thin carrier membrane, serves as substrate for growth of tissue cultured corneal endothelial cells in the case of autologous transplantation....................35 Figure 1.22 Schematic representation of corneal button glued to underlying membrane by a continuous peripheral ring of cyanoacrylate adhesive............................37 Figure 1.23 Diagram of surgical technique used to implant the cell carrier device...................................39 Figure 1.24 In one approach to open-system implants, 3-dimensional highly porous scaffolds composed of synthetic polymers serve as cell transplant devices.................43 Figure 1.25 Mechanism of the cell attachment to and detachment from material surfaces.........................44 Figure 1.26 Cell harvest mechanism by using temperature-responsive culture surfaces...............................46 Figure 1.27 Cell sheet release from temperature-responsive culture surfaces..........................................47 Figure 1.28 An illustration of cell sheet detachment by different types of water supply to (a) the PNIPAAm-grafted TCPS surface and (b) the PNIPAAm-grafted porous membrane..................................................49 Figure 1.29 Schematic illustration of cell sheet transfer.50 Figure 1.30 Three contexts in cell sheet engineering......51 Figure 1.31 Schematic illustration of 3-dimensional manipulation of viable cultured cardiomyocyte sheets (CMS).....................................................52 Figure 1.32 Corneal epithelial cell sheet transplantation.54 Figure 1.33 Tissue-engineered epithelial cell sheets fabricated from oral mucosal epithelium...................56 Figure 1.34 Chemical structure of a representative thermo-sensitive polymer, PNIPAAm................................58 Figure 1.35 The concept of release mechanism from thermo-sensitive PNIPAAm-g-PHEMA gel particles...................60 Figure 1.36 A plasma treatment apparatus was constructed for processing of materials and forming a film on the surface of a substrate....................................62 Figure 1.37 Preparative process for acidic (negatively charged) and basic (positively charged) gelatins from collagen..................................................64 Figure 1.38 Release of protein drug from biodegradable polymer carrier on the basis of polyion complexation......65 Figure 1.39 Schematic illustration of retinal transplantation with sandwich and trephination............66 Figure 1.40 Histological examination of sandwich-like sheet grafts in the rabbit subretinal space 2 weeks postoperatively, frozen-sectioned, and H&E stained........67 Figure 1.41 Dissertation layouts..........................69 Figure 2.1 Schematic illustration of a two-step method based on plasma-induced graft polymerization for preparation of thermo-responsive PNIPAAm-grafted culture surfaces..................................................76 Figure 2.2 Schematic diagram of the plasma treatment apparatus.................................................79 Figure 2.3 Formation of peroxide groups (mol/cm2) on the PE substrate surfaces after activation by Ar plasma with different treatment times (s) and discharge powers (W)....85 Figure 2.4 Dependence of the grafted amount of PAAc on the concentration of monomer aqueous solution at Ar plasma treatment (120 W, 90 s)...................................86 Figure 2.5 Effect of the concentration of peroxides on the grafted amount of PAAc on the PE substrates...............87 Figure 2.6 Effect of the concentration of Mohr's salt in the redox system on the grafted amount of PAAc on the PE substrates................................................88 Figure 2.7 ATR-FTIR spectra of (a) untreated PE specimens, and (b) PNIPAAm-grafted PE surfaces (1.6 μg/cm2) with the characteristic structures of isopropyl group, amide I, and amide II..................................................90 Figure 2.8 AFM tapping mode images from surfaces of (a) untreated PE specimens, and (b) PNIPAAm-grafted PE samples (1.6 μg/cm2).............................................92 Figure 2.9 Representative photographs of PNIPAAm-grafted PE substrates with high grafting yield (1846 μg/cm2) at different temperatures....................................96 Figure 2.10 HCECs cultured on the PNIPAAm-grafted PE surfaces with different grafting yields...................97 Figure 2.11 Cell detachment assay by the low-temperature treatment for (A) untreated PE, and (B) PNIPAAm-grafted PE culture substrates (1.6 μg/cm2)..........................98 Figure 3.1 Representative topographic image of PNIPAAm-grafted surface is observed by tapping-mode atomic force microscopy...............................................105 Figure 3.2 Fabrication of bioengineered human corneal endothelium from thermo-responsive culture supports.................................................106 Figure 3.3 Morphological features of cultured, untransformed human corneal endothelial cells, corneal epithelial cells, and stromal fibroblasts................114 Figure 3.4 RT-PCR detection of mRNA for G3PDH (452 bp), keratin 12 (409 bp), and collagen VIII α-1 (496 bp) in fresh human corneal epithelium, fresh human corneal endothelium, cultured human corneal epithelium, and cultured human corneal endothelium.......................115 Figure 3.5 Transmission electron micrographs of human corneal endothelial cells 1 (A) and 2 weeks (B) post-transplantation..........................................116 Figure 3.6 Phase-contrast micrographs of HCEC cultures on the thermo-responsive supports after incubation at 37°C for different time intervals.................................118 Figure 3.7 Gross observations of HCEC monolayer detachment from thermo-responsive culture supports after incubation at 20°C for (A) 10 min, (B) 25 min, and (C) 45 min..........120 Figure 3.8 Phase-contrast micrograph of HCEC monolayer separation from thermo-responsive culture support at 20°C........................................................121 Figure 3.9 Viability of detached HCEC monolayers was assessed by staining with a LIVE/DEAD Viability/Cytotoxicity Kit in which the live cells fluoresce green and the dead cells fluoresce red.........123 Figure 3.10 SEM micrographs of human eye bank corneas (control samples) and HCEC sheets........................125 Figure 3.11 Fluorescence micrographs of immunolocalization of ZO-1 in HCECs within detached cell sheets compared to control samples..........................................127 Figure 3.12 Fluorescence micrographs of immunolocalization of Na+/K+-ATPase in HCECs within detached cell sheets compared to control samples..............................128 Figure 3.13 Histological examination of control samples (A) and HCEC sheets (B) with DAPI (blue fluorescence) labeling show a monolayer of endothelial cells (arrows) is located on corneal stroma (asterisk) and cell carrier membrane (double asterisk), respectively..........................129 Figure 4.1 After cell separation from thermo-responsive PNIPAAm-grafted culture surfaces via thermal stimulus, a gelatin hydrogel carrier exhibiting multi-functions was used for the transfer of HCEC sheets.....................136 Figure 4.2 Time course of water content of various gelatin hydrogel discs after incubation in BSS at 34°C...........149 Figure 4.3 Typical gross photographs of gelatin discs (MW = 100 kDa) are shown (A) before testing, and after incubation in BSS at 34°C for distinct time periods (B) 5, (C) 60, (D) 360, and (E) 1440 min....................................150 Figure 4.4 Time course of dissolution degree of various gelatin hydrogel discs after incubation in BSS at 34°C...153 Figure 4.5 Phase-contrast micrographs of HCEC cultures in (A) controls (without materials) after a 2-day exposure to different types of gelatin discs (B) G-5-3, (C) G-5-8, (D) G-5-100, and (E) G-9-100.................................154 Figure 4.6 Cell proliferation assay of HCEC cultures incubated for 2 days at 37°C with various gelatin hydrogel discs....................................................155 Figure 4.7 Live/Dead assay of the thermally detached HCEC sheets in (A) controls (without materials) after direct contact with different types of gelatin discs (B) G-5-3, (C) G-5-8, (D) G-5-100, and (E) G-9-100 for 2 days at 37°C........................................................157 Figure 4.8 Mean percentage of live cells in the HCEC sheets incubated in direct contact with various gelatin hydrogel discs as determined by the Live/Dead assay...............158 Figure 4.9 The level of IL-6 released from HCEC cultures after incubation for 2 days at 37°C with various gelatin hydrogel discs...........................................162 Figure 4.10 Gelatin carriers for intraocular delivery of thermally detached HCEC sheets...........................163 Figure 5.1 The morphology of cultivated HCECs on PNIPAAm-grafted surfaces.........................................181 Figure 5.2 Gross observations of HCEC sheet detachment...182 Figure 5.3 Morphology of the harvested HCEC monolayers was observed by SEM and TEM..................................184 Figure 5.4 Western blot analyses of ZO-1 and Na+/K+-ATPase α1 subunit expression in HCEC sheets....................185 Figure 5.5 Surgical procedures of HCEC monolayer delivery using gelatin carriers...................................187 Figure 5.6 Representative slit-lamp biomicroscopic images of rabbit corneas denuded of endothelium (wound groups)..190 Figure 5.7 Representative slit-lamp biomicroscopic images of rabbit corneas receiving bioengineered HCEC sheets (HCEC sheet groups)............................................191 Figure 5.8 Central corneal thickness measurements during the follow-up period of 6 months.........................192 Figure 5.9 Histological examination of rabbit corneas after implantation of HCEC sheets for different time intervals.193 Figure 5.10 Gross examination of excised rabbit corneas 1 week after surgery.......................................194 Figure 5.11 Immunohistochemistry of the excised corneas after transplantation for 2 weeks........................195 LIST OF TABLES Table 1.1 A brief history of artificial corneas...........30 Table 1.2 Corneal endothelial cell transplantation using donor corneal buttons.....................................33 Table 1.3 Corneal endothelial cell transplantation using carrier substrates........................................36 Table 1.4 A brief history of corneal endothelial cell therapy...................................................40 Table 2.1 Elemental composition of control and PNIPAAm-grafted PE surfaces analyzed by EDX.......................91 Table 2.2 Water contact angles of control and PNIPAAm-grafted PE surfaces measured by sessile drop method.......93 Table 4.1 Physicochemical characteristics of raw gelatins.................................................138 Table 4.2 Tensile properties of the gelatin hydrogel carriers.................................................147

    [1] Maurice DM. The structure and transparency of the cornea. J. Physiol. 136, 263-286 (1957).
    [2] Joyce NC. Proliferative capacity of the corneal endothelium. Prog. Retin. Eye Res. 22, 359-389 (2003).
    [3] Chen KH, Azar D, Joyce NC. Transplantation of adult human corneal endothelium ex vivo: a morphologic study. Cornea 20, 731-737 (2001).
    [4] McCulley JP, Maurice DM, Schwartz BD. Corneal endothelial transplantation. Ophthalmology 87, 194-201 (1980).
    [5] Lange TM, Wood TO, McLaughlin BJ. Corneal endothelial cell transplantation using Descemet's membrane as a carrier. J. Cataract. Refract. Surg. 19, 232-235 (1993).
    [6] Ishino Y, Sano Y, Nakamura T, Connon CJ, Rigby H, Fullwood NJ, Kinoshita S. Amniotic membrane as a carrier for cultivated human corneal endothelial cell transplantation. Invest. Ophthalmol. Vis. Sci. 45, 800-806 (2004).
    [7] Jumblatt MM, Maurice DM, Schwartz BD. A gelatin membrane substrate for the transplantation of tissue cultured cells. Transplantation 29, 498-499 (1980).
    [8] Insler MS, Lopez JG. Microcarrier cell culture of neonatal human corneal endothelium. Curr. Eye Res. 9, 23-30 (1990).
    [9] Mohay J, Lange TM, Soltau JB, Wood TO, McLaughlin BJ. Transplantation of corneal endothelial cells using a cell carrier device. Cornea 13, 173-182 (1994).
    [10] Mimura T, Yamagami S, Yokoo S, Usui T, Tanaka K, Hattori S, Irie S, Miyata K, Araie M, Amano S. Cultured human corneal endothelial cell transplantation with a collagen sheet in a rabbit model. Invest. Ophthalmol. Vis. Sci. 45, 2992-2997 (2004).
    [11] Newell FW. In: Ophthalmology: Principles and Concepts (Newell FW, ed.), St. Louis, MO: C. V. Mosby Co., p. 3-79 (1979).
    [12] Suzuki K, Saito J, Yanai R, Yamada N, Chikama T, Seki K, Nishida T. Cell-matrix and cell-cell interactions during corneal epithelial wound healing. Prog. Retin. Eye Res. 22, 113-133 (2003).
    [13] Berman ER. In: Biochemistry of the Eye (Berman ER, ed.), Plenum Press, New York and London, p. 89-150 (1991).
    [14] Daxer A, Misof K, Grabner B, Ettl A, Fratzl P. Collagen fibrils in the human corneal stroma: structure and aging. Invest. Ophthalmol. Vis. Sci. 39, 644-648 (1998).
    [15] Engelmann K, Bednarz J, Valtink M. Prospects for endothelial transplantation. Exp. Eye Res. 78, 573-578 (2004).
    [16] Waring GO III, Bourne WM, Edelhauser HF, Kenyon KR. The corneal endothelium. Normal and pathologic structure and function. Ophthalmology 89, 531-590 (1982).
    [17] Sherrard ES, Ng YL. The other side of the corneal endothelium. Cornea 9, 48-54 (1990).
    [18] Joyce NC, Meklir B, Neufeld AH. In vitro pharmacologic separation of corneal endothelial migration and spreading responses. Invest. Ophthalmol. Vis. Sci. 31, 1816-1826 (1990).
    [19] Iwamoto T, Smelser GK. Electron microscopy of the human corneal endothelium with reference to transport mechanisms. Invest. Ophthalmol. 4, 270-284 (1965).
    [20] Joyce NC, Harris DL, Zieske JD. Mitotic inhibition of corneal endothelium in neonatal rats. Invest. Ophthalmol. Vis. Sci. 39, 2572-2583 (1998).
    [21] Li J, Kuang K, Nielsen S, Fischbarg J. Molecular identification and immunolocalization of the water channel protein aquaporin 1 in CBCECs. Invest. Ophthalmol. Vis. Sci. 40, 1288-1292 (1999).
    [22] Murphy C, Alvarado J, Juster R, Maglio M. Prenatal and postnatal cellularity of the human corneal endothelium. A quantitative histologic study. Invest. Ophthalmol. Vis. Sci. 25, 312-322 (1984).
    [23] Senoo T, Joyce NC. Cell cycle kinetics in corneal endothelium from old and young donors. Invest. Ophthalmol. Vis. Sci. 41, 660-667 (2000).
    [24] Chen KH, Harris DL, Joyce NC. TGF-β2 in aqueous humor suppresses S-phase entry in cultured corneal endothelial cells. Invest. Ophthalmol. Vis. Sci. 40, 2513-2519 (1999).
    [25] Senoo T, Obara Y, Joyce NC. EDTA: a promoter of proliferation in human corneal endothelium. Invest. Ophthalmol. Vis. Sci. 41, 2930-2935 (2000).
    [26] Chung EH, Hutcheon AEK, Joyce NC, Zieske JD. Synchronization of the G1/S transition in response to corneal debridement. Invest. Ophthalmol. Vis. Sci. 40, 1952-1958 (1999).
    [27] Laing RA, Sandstrom MM, Berrospi AR, Leibowitz HM. Changes in the corneal endothelium as a function of age. Exp. Eye Res. 22, 587-594 (1976).
    [28] Honda H, Ogita Y, Higuchi S, Kani K. Cell movements in a living mammalian tissue: long-term observation of individual cells in wounded corneal endothelia of cats. J. Morphol. 174, 25-39 (1982).
    [29] McCartney MD, Robertson DP, Wood TO, McLaughlin BJ. ATPase pump site density in human dysfunctional corneal endothelium. Invest. Ophthalmol. Vis. Sci. 28, 1955-1962 (1987).
    [30] Van Horn DL, Hyndiuk RA. Endothelial wound repair in primate cornea. Exp. Eye Res. 21, 113-124 (1975).
    [31] Insler MS, Lopez JG. Extended incubation times improve corneal endothelial cell transplantation success. Invest. Ophthalmol. Vis. Sci. 32, 1828-1836 (1991).
    [32] Insler MS, Lopez JG. Heterologous transplantation versus enhancement of human corneal endothelium. Cornea 10, 136-148 (1991).
    [33] Insler MS, Cooper HD, Caldwell DR. Analysis of corneal thickness and endothelial cell density in pseudophakic and aphakic patients undergoing penetrating keratoplasty. Arch. Ophthalmol. 103, 390-393 (1985).
    [34] Caldwell DR. The soft keratoprosthesis. Trans. Am. Ophthalmol. Soc. 95, 751-802 (1997).
    [35] Hicks C, Crawford G, Chirila T, Wiffen S, Vijayasekaran S, Lou X, Fitton J, Maley M, Clayton A, Dalton P, Platten S, Ziegelaar B, Hong Y, Russo A, Constable I. Development and clinical assessment of an artificial cornea. Prog. Retin. Eye Res. 19, 149-170 (2000).
    [36] De Quengsy GP. Precis ou cours d’operations sur la chirurgie des yeux. Didot, Paris, France (1789).
    [37] Von Nussbaum A. Cornea Artificialis. Schurich, Munchen (1853).
    [38] Stone W Jr, Herbert E. Experimental study of plastic material as replacement for the cornea; a preliminary report. Am. J. Ophthalmol. 36, 168-173 (1953).
    [39] Cardona H. Plastic keratoprostheses: a description of the plastic material and comparative histologic study of recipient corneas. Am. J. Ophthalmol. 58, 247-252 (1964).
    [40] Cardona H. Mushroom transcorneal keratoprosthesis (bolt and nut). Am. J. Ophthalmol. 68, 604-612 (1969).
    [41] Cardona H. Prosthokeratoplasty. Cornea 2, 179-183 (1983).
    [42] Girard LJ, Moore CD, Soper JW, O’ Bannon WO. Prosthetosclerokeratoplasty-implantation of a keratoprosthesis using full-thickness onlay sclera and sliding conjunctival flap. Trans. Am. Acad. Ophthalmol. Otolaryngol. 73, 936-961 (1969).
    [43] Polack FM, Heimke G. Ceramic keratoprostheses. Ophthalmology 87, 693-698 (1980).
    [44] Trinkaus-Randall V, Capecchi J, Newton A, Vadasz A, Leibowitz H, Franzblau C. Development of a biopolymeric keratoprosthetic material. Evaluation in vitro and in vivo. Invest. Ophthalmol. Vis. Sci. 29, 393-400 (1988).
    [45] Chirila TV, Constable IJ, Crawford GJ, Vijayasekaran S, Thompson DE, Chen YC, Fletcher WA, Griffin BJ. Poly(2-hydroxyethyl methacrylate) sponges as implant materials: in vivo and in vitro evaluation of cellular invasion. Biomaterials 14, 26-38 (1993).
    [46] Jacob-Labarre JT, Caldwell DR. In: Progress in Biomedical Polymers (Gebelein CG, Dunn RL, eds.), Plenum Press, New York, p. 27-39 (1990).
    [47] Legeais JM, Renard G, Parel JM, Serdarevic O, Mei-Mui M, Pouliquen Y. Expanded fluorocarbon for keratoprosthesis cellular ingrowth and transparency. Exp. Eye Res. 58, 41-51 (1994).
    [48] Hsiue GH, Lee SD, Wang CC, Chang PCT. The effect of plasma-induced graft copolymerization of PHEMA on silicone rubber towards improving corneal epithelial cells growth. J. Biomater. Sci.-Polym. Ed. 5, 205-220 (1993).
    [49] Hsiue GH, Lee SD, Wang CC, Shiue MHI, Chang PCT. ppHEMA-modified silicone rubber film towards improving rabbit corneal epithelial cell attachment and growth. Biomaterials 14, 591-597 (1993).
    [50] Hsiue GH, Lee SD, Wang CC, Shiue MHI, Chang PCT. Plasma-induced graft copolymerization of HEMA onto silicone rubber and TPX film improving rabbit corneal epithelial cell attachment and growth. Biomaterials 15, 163-171 (1994).
    [51] Lee SD, Hsiue GH, Kao CY, Chang PCT. Artificial cornea: surface modification of silicone rubber membrane by graft polymerization of pHEMA via glow discharge. Biomaterials 17, 587-595 (1996).
    [52] Hsiue GH, Lee SD, Chang PCT. Surface modification of silicone rubber membrane by plasma induced graft copolymerization as artificial cornea. Artif. Organs 20, 1196-1207 (1996).
    [53] Chang PCT, Lee SD, Hsiue GH. Heterobifunctional membranes by plasma induced graft polymerization as an artificial organ for penetration keratoprosthesis. J. Biomed. Mater. Res. 39, 380-389 (1998).
    [54] Hsiue GH, Lee SD, Kao CY, Chang PCT. In: Advanced Biomaterials in Biomedical Engineering and Drug Delivery Systems (Ogata N, Kim SW, Feijen J, Okano T, eds.), Springer-Verlag, Tokyo, p. 137-142 (1996).
    [55] Stocker FW, Eiring A, Georgiade R, Georgiade N. A tissue culture technique for growing corneal epithelial, stromal, and endothelial tissues separately. Am. J. Ophthalmol. 46, 294-298 (1958).
    [56] Maurice D, Perlman M. Permanent destruction of the corneal endothelium in rabbits. Invest. Ophthalmol. Vis. Sci. 16, 646-649 (1977).
    [57] Jumblatt MM, Maurice DM, McCulley JP. Transplantation of tissue-cultured corneal endothelium. Invest. Ophthalmol. Vis. Sci. 17, 1135-1141 (1978).
    [58] Joo CK, Green WR, Pepose JS, Fleming TP. Repopulation of denuded murine Descemet's membrane with life-extended murine corneal endothelial cells as a model for corneal cell transplantation. Graefes Arch. Clin. Exp. Ophthalmol. 238, 174-180 (2000).
    [59] Gospodarowicz D, Greenburg G, Alvarado J. Transplantation of cultured bovine corneal endothelial cells to rabbit cornea: clinical implications for human studies. Proc. Natl. Acad. Sci. U. S. A. 76, 464-468 (1979).
    [60] Gospodarowicz D, Greenburg G, Alvarado J. Transplantation of cultured bovine corneal endothelial cells to species with nonregenerative endothelium. The cat as an experimental model. Arch. Ophthalmol. 97, 2163-2169 (1979).
    [61] Alvarado JA, Gospodarowicz D, Greenburg G. Corneal endothelial replacement. I. In vitro formation of an endothelial monolayer. Invest. Ophthalmol. Vis. Sci. 21, 300-316 (1981).
    [62] Insler MS, Lopez JG. Transplantation of cultured human neonatal corneal endothelium. Curr. Eye Res. 5, 967-972 (1986).
    [63] Mimura T, Amano S, Usui T, Araie M, Ono K, Akihiro H, Yokoo S, Yamagami S. Transplantation of corneas reconstructed with cultured adult human corneal endothelial cells in nude rats. Exp. Eye Res. 79, 231-237 (2004).
    [64] Langer R, Vacanti JP. Tissue engineering. Science 260, 920-926 (1993).
    [65] Griffith M, Osborne R, Munger R, Xiong X, Doillon CJ, Laycock NLC, Hakim M, Song Y, Watsky MA. Functional human corneal equivalents constructed from cell lines. Science 286, 2169-2172 (1999).
    [66] Yang J, Yamato M, Kohno C, Nishimoto A, Sekine H, Fukai F, Okano T. Cell sheet engineering: recreating tissues without biodegradable scaffolds. Biomaterials 26, 6415-6422 (2005).
    [67] Yamato M, Okano T. Cell sheet engineering. Mater. Today 7, 42-47 (2004).
    [68] Shimizu T, Yamato M, Isoi Y, Akutsu T, Setomaru T, Abe K, Kikuchi A, Umezu M, Okano T. Fabrication of pulsatile cardiac tissue grafts using a novel 3-dimensional cell sheet manipulation technique and temperature-responsive cell culture surfaces. Circ. Res. 90, e40-e48 (2002).
    [69] Nishida K, Yamato M, Hayashida Y, Watanabe K, Yamamoto K, Adachi E, Nagai S, Kikuchi A, Maeda N, Watanabe H, Okano T, Tano Y. Corneal reconstruction with tissue-engineered cell sheets composed of autologous oral mucosal epithelium. N. Engl. J. Med. 351, 1187-1196 (2004).
    [70] Shiroyanagi Y, Yamato M, Yamazaki Y, Toma H, Okano T. Urothelium regeneration using viable cultured urothelial cell sheets grafted on demucosalized gastric flaps. BJU Int. 93, 1069-1075 (2004).
    [71] Akizuki T, Oda S, Komaki M, Tsuchioka H, Kawakatsu N, Kikuchi A, Yamato M, Okano T, Ishikawa I. Application of periodontal ligament cell sheet for periodontal regeneration: a pilot study in beagle dogs. J. Periodont. Res. 40, 245-251 (2005).
    [72] Okano T, Yamada N, Okuhara M, Sakai H, Sakurai Y. Mechanism of cell detachment from temperature-modulated, hydrophilic-hydrophobic polymer surfaces. Biomaterials 16, 297-303 (1995).
    [73] Ratner BD, Horbett T, Hoffman AS, Hauschka SD. Cell adhesion to polymeric materials: implications with respect to biocompatibility. J. Biomed. Mater. Res. 9, 407-422 (1975).
    [74] Yamada N, Okano T, Sakai H, Karikusa F, Sawasaki Y, Sakurai Y. Thermo-responsive polymeric surfaces; control of attachment and detachment of cultured cells. Makromol. Chem. Rapid Commun. 11, 571-576 (1990).
    [75] Okano T, Yamada N, Sakai H, Sakurai Y. A novel recovery system for cultured cells using plasma-treated polystyrene dishes grafted with poly(N-isopropylacrylamide). J. Biomed. Mater. Res. 27, 1243-1251 (1993).
    [76] Shimizu T, Yamato M, Kikuchi A, Okano T. Cell sheet engineering for myocardial tissue reconstruction. Biomaterials 24, 2309-2316 (2003).
    [77] Kwon OH, Kikuchi A, Yamato M, Sakurai Y, Okano T. Rapid cell sheet detachment from poly(N-isopropylacrylamide)-grafted porous cell culture membranes. J. Biomed. Mater. Res. 50, 82-89 (2000).
    [78] Kushida A, Yamato M, Kikuchi A, Okano T. Two-dimensional manipulation of differentiated Madin-Darby canine kidney (MDCK) cell sheets: the noninvasive harvest from temperature-responsive culture dishes and transfer to other surfaces. J. Biomed. Mater. Res. 54, 37-46 (2001).
    [79] Shimizu T, Yamato M, Akutsu T, Shibata T, Isoi Y, Kikuchi A, Umezu M, Okano T. Electrically communicating three-dimensional cardiac tissue mimic fabricated by layered cultured cardiomyocyte sheets. J. Biomed. Mater. Res. 60, 110-117 (2002).
    [80] Nishida K, Yamato M, Hayashida Y, Watanabe K, Maeda N, Watanabe H, Yamamoto K, Nagai S, Kikuchi A, Tano Y, Okano T. Functional bioengineered corneal epithelial sheet grafts from corneal stem cells expanded ex vivo on a temperature-responsive cell culture surface. Transplantation 77, 379-385 (2004).
    [81] Hayashida Y, Nishida K, Yamato M, Watanabe K, Maeda N, Watanabe H, Kikuchi A, Okano T, Tano Y. Ocular surface reconstruction using autologous rabbit oral mucosal epithelial sheets fabricated ex vivo on a temperature-responsive culture surface. Invest. Ophthalmol. Vis. Sci. 46, 1632-1639 (2005).
    [82] Yoshida R, Uchida K, Kaneko Y, Sakai K, Kikuchi A, Sakurai Y, Okano T. Comb-type grafted hydrogels with rapid de-swelling response to temperature changes. Nature 374, 240-242 (1995).
    [83] Schmaljohann D, Oswald J, Jørgensen B, Nitschke M, Beyerlein D, Werner C. Thermo-responsive PNiPAAm-g-PEG films for controlled cell detachment. Biomacromolecules 4, 1733-1739 (2003).
    [84] Hsiue GH, Hsu SH, Yang CC, Lee SH, Yang IK. Preparation of controlled release ophthalmic drops, for glaucoma therapy using thermosensitive poly-N-isopropylacrylamide. Biomaterials 23, 457-462 (2002).
    [85] Hsiue GH, Chang RW, Wang CH, Lee SH. Development of in situ thermosensitive drug vehicles for glaucoma therapy. Biomaterials 24, 2423-2430 (2003).
    [86] Kondo T, Koyama M, Kubota H, Katakai R. Characteristics of acrylic acid and N-isopropylacrylamide binary monomers-grafted polyethylene film synthesized by photografting. J. Appl. Polym. Sci. 67, 2057-2064 (1998).
    [87] Hsiue GH, Lee SD, Chang PCT, Kao CY. Surface characterization and biological properties study of silicone rubber membrane grafted with phospholipid as biomaterial via plasma induced graft copolymerization. J. Biomed. Mater. Res. 42, 134-147 (1998).
    [88] Singh RP. Surface grafting onto polypropylene: a survey of recent developments. Prog. Polym. Sci. 17, 251-281 (1992).
    [89] Lee SD, Hsiue GH, Chang PCT, Kao CY. Plasma-induced grafted polymerization of acrylic acid and subsequent grafting of collagen onto polymer film as biomaterials. Biomaterials 17, 1599-1608 (1996).
    [90] Wang CC, Hsiue GH. Oxidation of polyethylene surface by glow discharge and subsequent graft copolymerization of acrylic acid. J. Polym. Sci. Pol. Chem. 31, 1307-1314 (1993).
    [91] Suzuki M, Kishida A, Iwata H, Ikada Y. Graft copolymerization of acrylamide onto a polyethylene surface pretreated with a glow discharge. Macromolecules 19, 1804-1808 (1986).
    [92] Pan YV, Wesley RA, Luginbuhl R, Denton DD, Ratner BD. Plasma polymerized N-isopropylacrylamide: synthesis and characterization of a smart thermally responsive coating. Biomacromolecules 2, 32-36 (2001).
    [93] Cheng X, Wang Y, Hanein Y, Böhringer KF, Ratner BD. Novel cell patterning using microheater-controlled thermoresponsive plasma films. J. Biomed. Mater. Res. Part A 70A, 159-168 (2004).
    [94] Okamura A, Itayagoshi M, Hagiwara T, Yamaguchi M, Kanamori T, Shinbo T, Wang PC. Poly(N-isopropylacrylamide)-graft-polypropylene membranes containing adsorbed antibody for cell separation. Biomaterials 26, 1287-1292 (2005).
    [95] Tabata Y, Ikada Y. Protein release from gelatin matrices. Adv. Drug Deliv. Rev. 31, 287-301 (1998).
    [96] Mao JS, Cui YL, Wang XH, Sun Y, Yin YJ, Zhao HM, Yao KD. A preliminary study on chitosan and gelatin polyelectrolyte complex cytocompatibility by cell cycle and apoptosis analysis. Biomaterials 25, 3973-3981 (2004).
    [97] Fukunaka Y, Iwanaga K, Morimoto K, Kakemi M, Tabata Y. Controlled release of plasmid DNA from cationized gelatin hydrogels based on hydrogel degradation. J. Control. Release 80, 333-343 (2002).
    [98] Morimoto K, Chono S, Kosai T, Seki T, Tabata Y. Design of novel injectable cationic microspheres based on aminated gelatin for prolonged insulin action. J. Pharm. Pharmacol. 57, 839-844 (2005).
    [99] Okamoto T, Yamamoto Y, Gotoh M, Huang CL, Nakamura T, Shimizu Y, Tabata Y, Yokomise H. Slow release of bone morphogenetic protein 2 from a gelatin sponge to promote regeneration of tracheal cartilage in a canine model. J. Thorac. Cardiovasc. Surg. 127, 329-334 (2004).
    [100] Hokugo A, Ozeki M, Kawakami O, Sugimoto K, Mushimoto K, Morita S, Tabata Y. Augmented bone regeneration activity of platelet-rich plasma by biodegradable gelatin hydrogel. Tissue Eng. 11, 1224-1233 (2005).
    [101] Kushibiki T, Matsumoto K, Nakamura T, Tabata Y. Suppression of tumor metastasis by NK4 plasmid DNA released from cationized gelatin. Gene Ther. 11, 1205-1214 (2004).
    [102] Hsiue GH, Lai JY, Lin PK. Absorbable sandwich-like membrane for retinal-sheet transplantation. J. Biomed. Mater. Res. 61, 19-25 (2002).
    [103] Sipe JD. Tissue engineering and reparative medicine. Ann. NY Acad. Sci. 961, 1-9 (2002).
    [104] Juliusson B, Bergström A, Van Veen T, Ehinger B. Cellular organization in retinal transplants using cell suspensions or fragments of embryonic retinal tissue. Cell Transplant. 2, 411-418 (1993).
    [105] Bae YH, Okano T, Hsu R, Kim SW. Thermo-sensitive polymers as on-off switches for drug release. Makromol. Chem. Rapid Commun. 8, 481-485 (1987).
    [106] Hoffman AS. Applications of thermally reversible polymers and hydrogels in therapeutics and diagnostics. J. Control. Release 6, 297-305 (1987).
    [107] Burke SE, Barrett CJ. pH-responsive properties of multilayered poly(L-lysine)/hyaluronic acid surfaces. Biomacromolecules 4, 1773-1783 (2003).
    [108] Ward JH, Bashir R, Peppas NA. Micropatterning of biomedical polymer surfaces by novel UV polymerization techniques. J. Biomed. Mater. Res. 56, 351-360 (2001).
    [109] Kwon IC, Bae YH, Kim SW. Electrically erodible polymer gel for controlled release of drugs. Nature 354, 291-293 (1991).
    [110] Otake K, Inomata H, Konno M, Saito S. Thermal analysis of the volume phase transition with N-isopropylacrylamide gels. Macromolecules 23, 283-289 (1990).
    [111] Schild HG. Poly(N-isopropylacrylamide): experiment, theory and application. Prog. Polym. Sci. 17, 163-249 (1992).
    [112] Jeong B, Kim SW, Bae YH. Thermosensitive sol-gel reversible hydrogels. Adv. Drug Deliv. Rev. 54, 37-51 (2002).
    [113] Kurisawa M, Yokoyama M, Okano T. Gene expression control by temperature with thermo-responsive polymeric gene carriers. J. Control. Release 69, 127-137 (2000).
    [114] Murata M, Kaku W, Anada T, Sato Y, Kano T, Maeda M, Katayama Y. Novel DNA/polymer conjugate for intelligent antisense reagent with improved nuclease resistance. Bioorg. Med. Chem. Lett. 13, 3967-3970 (2003).
    [115] Matsukata M, Aoki T, Sanui K, Ogata N, Kikuchi A, Sakurai Y, Okano T. Effect of molecular architecture of poly(N-isopropylacrylamide)-trypsin conjugates on their solution and enzymatic properties. Bioconjugate Chem. 7, 96-101 (1996).
    [116] Ding Z, Fong RB, Long CJ, Stayton PS, Hoffman AS. Size-dependent control of the binding of biotinylated proteins to streptavidin using a polymer shield. Nature 411, 59-62 (2001).
    [117] Lin FH, Chen TM, Chen KS, Wu TH, Chen CC. An animal study of a novel tri-layer wound dressing material: non-woven fabric grafted with N-isopropyl acrylamide and gelatin. Mater. Chem. Phys. 64, 189-195 (2000).
    [118] Lin SY, Chen KS, Liang RC. Design and evaluation of drug-loaded wound dressing having thermoresponsive, adhesive, absorptive and easy peeling properties. Biomaterials 22, 2999-3004 (2001).
    [119] Von Recum HA, Kikuchi A, Okuhara M, Sakurai Y, Okano T, Kim SW. Retinal pigmented epithelium cultures on thermally responsive polymer porous substrates. J. Biomater. Sci.-Polym. Ed. 9, 1241-1253 (1998).
    [120] Von Recum HA, Kim SW, Kikuchi A, Okuhara M, Sakurai Y, Okano T. Novel thermally reversible hydrogel as detachable cell culture substrate. J. Biomed. Mater. Res. 40, 631-639 (1998).
    [121] Kubota A, Nishida K, Yamato M, Yang J, Kikuchi A, Okano T, TanoY. Transplantable retinal pigment epithelial cell sheets for tissue engineering. Biomaterials 27, 3639-3644 (2006).
    [122] Kushida A, Yamato M, Konno C, Kikuchi A, Sakurai Y, Okano T. Temperature-responsive culture dishes allow nonenzymatic harvest of differentiated Madin-Darby canine kidney (MDCK) cell sheets. J. Biomed. Mater. Res. 51, 216-223 (2000).
    [123] Shimizu T, Yamato M, Kikuchi A, Okano T. Two-dimensional manipulation of cardiac myocyte sheets utilizing temperature-responsive culture dishes augments the pulsatile amplitude. Tissue Eng. 7, 141-151 (2001).
    [124] Miyahara Y, Nagaya N, Kataoka M, Yanagawa B, Tanaka K, Hao H, Ishino K, Ishida H, Shimizu T, Kangawa K, Sano S, Okano T, Kitamura S, Mori H. Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction. Nat. Med. 12, 459-465 (2006).
    [125] Yamato M, Utsumi M, Kushida A, Konno C, Kikuchi A, Okano T. Thermo-responsive culture dishes allow the intact harvest of multilayered keratinocyte sheets without dispase by reducing temperature. Tissue Eng. 7, 473-480 (2001).
    [126] Nandkumar MA, Yamato M, Kushida A, Konno C, Hirose M, Kikuchi A, Okano T. Two-dimensional cell sheet manipulation of heterotypically co-cultured lung cells utilizing temperature-responsive culture dishes results in long-term maintenance of differentiated epithelial cell functions. Biomaterials 23, 1121-1130 (2002).
    [127] Shiroyanagi Y, Yamato M, Yamazaki Y, Toma H, Okano T. Transplantable urothelial cell sheets harvested noninvasively from temperature-responsive culture surfaces by reducing temperature. Tissue Eng. 9, 1005-1012 (2003).
    [128] Ide T, Nishida K, Yamato M, Sumide T, Utsumi M, Nozaki T, Kikuchi A, Okano T, Tano Y. Structural characterization of bioengineered human corneal endothelial cell sheets fabricated on temperature-responsive culture dishes. Biomaterials 27, 607-614 (2006).
    [129] Sumide T, Nishida K, Yamato M, Ide T, Hayashida Y, Watanabe K, Yang J, Kohno C, Kikuchi A, Maeda N, Watanabe H, Okano T, Tano Y. Functional human corneal endothelial cell sheets harvested from temperature-responsive culture surfaces. Faseb J. 20, 392-394 (2006).
    [130] Hoffman AS. Modification of material surfaces to affect how they interact with blood. Ann. NY Acad. Sci. 516, 96-101 (1987).
    [131] Hsiue GH, Wang CC. Glucose oxidase immobilized polyethylene-g-acrylic acid membrane for glucose oxidase sensor. Biotechnol. Bioeng. 36, 811-815 (1990).
    [132] Wang CC, Hsiue GH. Immobilization of glucose oxidase on polyethylene film using a plasma induced graft copolymerization process. J. Biomater. Sci.-Polym. Ed. 4, 357-367 (1993).
    [133] Hsiue GH, Lu PL, Chen JC. Multienzyme-immobilized modified polypropylene membrane for an amperometric creatinine biosensor. J. Appl. Polym. Sci. 92, 3126-3134 (2004).
    [134] Hsiue GH, Wang CC. Functionalization of polyethylene surface using plasma-induced graft copolymerization of acrylic acid. J. Polym. Sci. Pol. Chem. 31, 3327-3337 (1993).
    [135] Iwata H, Kishida A, Suzuki M, Hata Y, Ikada Y. Oxidation of polyethylene surface by corona discharge and the subsequent graft polymerization. J. Polym. Sci. Pol. Chem. 26, 3309-3322 (1988).
    [136] Fischbach C, Tessmar J, Lucke A, Schnell E, Schmeer G, Blunk T, Göpferich A. Does UV irradiation affect polymer properties relevant to tissue engineering? Surf. Sci. 491, 333-345 (2001).
    [137] Ito Y, Inaba M, Chung DJ, Imanishi Y. Control of water permeation by pH and ionic strength through a porous membrane having poly(carboxylic acid) surface-grafted. Macromolecules 25, 7313-7316 (1992).
    [138] Hsiue GH, Wang CC. Studies on the physical properties of polyethylene-g-acrylic acid to immobilizing glucose oxidase. J. Appl. Polym. Sci. 40, 235-247 (1990).
    [139] Kritskaya DA, Pomogailo AD, Ponomarev AN, Dyaschkovskii FS. Functionalization of polymer supports for polymerization catalysts by graft polymerization method. J. Appl. Polym. Sci. 25, 349-357 (1980).
    [140] Moshonov A, Avny Y. The initiation of in situ polymerization of vinyl monomers in polyester by glow discharge. J. Appl. Polym. Sci. 25, 89-100 (1980).
    [141] Avny Y, Rebenefeld L, Weigmann HD. The in situ polymerization of vinyl monomers in polyester yarns. J. Appl. Polym. Sci. 22, 125-147 (1978).
    [142] Ishigaki I, Sugo T, Senoo K, Okada T, Okamoto J, Machi S. Graft polymerization of acrylic acid onto polyethylene film by preirradiation method. I. Effects of preirradiation dose, monomer concentration, reaction temperature, and film thickness. J. Appl. Polym. Sci. 27, 1033-1041 (1982).
    [143] Ishigaki I, Sugo T, Takayama T, Okada T, Okamoto J, Machi S. Graft polymerization of acrylic acid onto polyethylene film by preirradiation method. II. Effects of oxygen at irradiation, storage time after irradiation, mohr's salt, and ethylene dichloride. J. Appl. Polym. Sci. 27, 1043-1051 (1982).
    [144] Lin SY, Chen KS, Liang RC. Thermal micro ATR/FT-IR spectroscopic system for quantitative study of the molecular structure of poly(N-isopropylacrylamide) in water. Polymer 40, 2619-2624 (1999).
    [145] Kikuchi A, Okuhara M, Karikusa F, Sakurai Y, Okano T. Two-dimensional manipulation of confluently cultured vascular endothelial cells using temperature-responsive poly(N-isopropylacrylamide)-grafted surfaces. J. Biomater. Sci.-Polym. Ed. 9, 1331-1348 (1998).
    [146] Zhu C, Joyce NC. Proliferative response of corneal endothelial cells from young and older donors. Invest. Ophthalmol. Vis. Sci. 45, 1743-1751 (2004).
    [147] Hsiue GH, Lai JY, Chen KH, Hsu WM. A novel strategy for corneal endothelial reconstruction with a bioengineered cell sheet. Transplantation 81, 473-476 (2006).
    [148] Stiemke MM, Edelhauser HF, Geroski DH. The developing corneal endothelium: correlation of morphology, hydration and Na/K ATPase pump site density. Curr. Eye Res. 10, 145-156 (1991).
    [149] Mathew AJ, Baust JM, Van Buskirk RG, Baust JG. Cell preservation in reparative and regenerative medicine: evolution of individualized solution composition. Tissue Eng. 10, 1662-1671 (2004).
    [150] Rauen U, Petrat F, Li T, De Groot H. Hypothermia injury/cold-induced apoptosis: evidence of an increase in chelatable iron causing oxidative injury in spite of low O2-/H2O2 formation. Faseb J. 14, 1953-1964 (2000).
    [151] Aboalchamat B, Engelmann K, Böhnke M, Eggli P, Bednarz J. Morphological and functional analysis of immortalized human corneal endothelial cells after transplantation. Exp. Eye Res. 69, 547-553 (1999).
    [152] Böhnke M, Eggli P, Engelmann K. Transplantation of cultured adult human or porcine corneal endothelial cells onto human recipients in vitro. Part II: Evaluation in the scanning electron microscope. Cornea 18, 207-213 (1999).
    [153] Petroll WM, Hsu JKW, Bean J, Cavanagh HD, Jester JV. The spatial organization of apical junctional complex-associated proteins in feline and human corneal endothelium. Curr. Eye Res. 18, 10-19 (1999).
    [154] McCartney MD, Wood TO, McLaughlin BJ. Immunohistochemical localization of ATPase in human dysfunctional corneal endothelium. Curr. Eye Res. 6, 1479-1486 (1987).
    [155] Ebara M, Yamato M, Aoyagi T, Kikuchi A, Sakai K, Okano T. Temperature-responsive cell culture surfaces enable “on-off” affinity control between cell integrins and RGDS ligands. Biomacromolecules 5, 505-510 (2004).
    [156] Demetriou AA, Whiting JF, Feldman D, Levenson SM, Chowdhury NR, Moscioni AD, Kram M, Chowdhury JR. Replacement of liver function in rats by transplantation of microcarrier-attached hepatocytes. Science 233, 1190-1192 (1986).
    [157] Lu L, Yaszemski MJ, Mikos AG. Retinal pigment epithelium engineering using synthetic biodegradable polymers. Biomaterials 22, 3345-3355 (2001).
    [158] Hirose M, Kwon OH, Yamato M, Kikuchi A, Okano T. Creation of designed shape cell sheets that are noninvasively harvested and moved onto another surface. Biomacromolecules 1, 377-381 (2000).
    [159] Chiellini E, Cinelli P, Grillo Fernandes E, Kenawy ERS, Lazzeri A. Gelatin-based blends and composites. Morphological and thermal mechanical characterization. Biomacromolecules 2, 806-811 (2001).
    [160] Park H, Temenoff JS, Holland TA, Tabata Y, Mikos AG. Delivery of TGF-β1 and chondrocytes via injectable, biodegradable hydrogels for cartilage tissue engineering applications. Biomaterials 26, 7095-7103 (2005).
    [161] Miyoshi M, Kawazoe T, Igawa HH, Tabata Y, Ikada Y, Suzuki S. Effects of bFGF incorporated into a gelatin sheet on wound healing. J. Biomater. Sci.-Polym. Ed. 16, 893-907 (2005).
    [162] Taira M, Furuuchi H, Saitoh S, Sugiyama Y, Sekiyama S, Araki Y, Tabata Y. Bio-sorption of acidic gelatine hydro-gels implanted in the back tissues of Fisher's rats. J. Oral Rehabil. 32, 382-387 (2005).
    [163] Zekorn D. Intravascular retention, dispersal, excretion and break-down of gelatin plasma substitutes. Bibl. Haematol. 33, 131-140 (1969).
    [164] Guidoin R, Marceau D, Rao TJ, King M, Merhi Y, Roy PE, Martin L, Duval M. In vitro and in vivo characterization of an impervious polyester arterial prosthesis: the Gelseal Triaxial® graft. Biomaterials 8, 433-441 (1987).
    [165] Otani Y, Tabata Y, Ikada Y. Hemostatic capability of rapidly curable glues from gelatin, poly(L-glutamic acid), and carbodiimide. Biomaterials 19, 2091-2098 (1998).
    [166] Tabata Y, Uno K, Yamaoka T, Ikada Y, Muramatsu S. Effects of recombinant α-interferon-gelatin conjugate on in vivo murine tumor cell growth. Cancer Res. 51, 5532-5538 (1991).
    [167] Kushibiki T, Matsuoka H, Tabata Y. Synthesis and physical characterization of poly(ethylene glycol)-gelatin conjugates. Biomacromolecules 5, 202-208 (2004).
    [168] Choksakulnimitr S, Masuda S, Tokuda H, Takakura Y, Hashida M. In vitro cytotoxicity of macromolecules in different cell culture systems. J. Control. Release 34, 233-241 (1995).
    [169] Chen KH, Hsu WM, Chiang CC, Li YS. Transforming growth factor-β2 inhibition of corneal endothelial proliferation mediated by prostaglandin. Curr. Eye Res. 26, 363-370 (2003).
    [170] Harris DL, Joyce NC. Transforming growth factor-β suppresses proliferation of rabbit corneal endothelial cells in vitro. J. Interferon Cytokine Res. 19, 327-334 (1999).
    [171] Bigi A, Panzavolta S, Rubini K. Relationship between triple-helix content and mechanical properties of gelatin films. Biomaterials 25, 5675-5680 (2004).
    [172] Katz EP, Li ST. The intermolecular space of reconstituted collagen fibrils. J. Mol. Biol. 73, 351-369 (1973).
    [173] Trudel J, Massia SP. Assessment of the cytotoxicity of photocrosslinked dextran and hyaluronan-based hydrogels to vascular smooth muscle cells. Biomaterials 23, 3299-3307 (2002).
    [174] Carlson KH, Bourne WM, Brubaker RF. Effect of long-term contact lens wear on corneal endothelial cell morphology and function. Invest. Ophthalmol. Vis. Sci. 29, 185-193 (1988).
    [175] Malchiodi-Albedi F, Morgillo A, Formisano G, Paradisi S, Perilli R, Scalzo GC, Scorcia G, Caiazza S. Biocompatibility assessment of silicone oil and perfluorocarbon liquids used in retinal reattachment surgery in rat retinal cultures. J. Biomed. Mater. Res. 60, 548-555 (2002).
    [176] Sobottka Ventura AC, Böhnke M. Pentoxifylline influences the autocrine function of organ cultured donor corneas and enhances endothelial cell survival. Br. J. Ophthalmol. 85, 1110-1114 (2001).
    [177] Melles GRJ, Eggink FAGJ, Lander F, Pels E, Rietveld FJR, Beekhuis WH, Binder PS. A surgical technique for posterior lamellar keratoplasty. Cornea 17, 618-626 (1998).
    [178] Fogla R, Padmanabhan P. Initial results of small incision deep lamellar endothelial keratoplasty (DLEK). Am. J. Ophthalmol. 141, 346-351 (2006).
    [179] Terry MA, Ousley PJ. Deep lamellar endothelial keratoplasty: early complications and their management. Cornea 25, 37-43 (2006).
    [180] Mimura T, Yamagami S, Yokoo S, Yanagi Y, Usui T, Ono K, Araie M, Amano S. Sphere therapy for corneal endothelium deficiency in a rabbit model. Invest. Ophthalmol. Vis. Sci. 46, 3128-3135 (2005).
    [181] Horan PK, Slezak SE. Stable cell membrane labelling. Nature 340, 167-168 (1989).
    [182] Ford JW, Welling TH III, Stanley JC, Messina LM. PKH26 and 125I-PKH95: characterization and efficacy as labels for in vitro and in vivo endothelial cell localization and tracking. J. Surg. Res. 62, 23-28 (1996).
    [183] Nuyts RM, Pels E, Greve EL. The effects of 5-fluorouracil and mitomycin C on the corneal endothelium. Curr. Eye Res. 11, 565-570 (1992).
    [184] Vernon RB, Sage EH. A novel, quantitative model for study of endothelial cell migration and sprout formation within three-dimensional collagen matrices. Microvasc. Res. 57, 118-133 (1999).
    [185] Del Priore LV, Tezel TH, Kaplan HJ. Survival of allogeneic porcine retinal pigment epithelial sheets after subretinal transplantation. Invest. Ophthalmol. Vis. Sci. 45, 985-992 (2004).
    [186] Stover NP, Bakay RAE, Subramanian T, Raiser CD, Cornfeldt ML, Schweikert AW, Allen RC, Watts RL. Intrastriatal implantation of human retinal pigment epithelial cells attached to microcarriers in advanced Parkinson disease. Arch. Neurol. 62, 1833-1837 (2005).
    [187] Tezel TH, Del Priore LV, Kaplan HJ. Harvest and storage of adult human retinal pigment epithelial sheets. Curr. Eye Res. 16, 802-809 (1997).
    [188] Ho TC, Del Priore LV, Kaplan HJ. Tissue culture of retinal pigment epithelium following isolation with a gelatin matrix technique. Exp. Eye Res. 64, 133-139 (1997).
    [189] Huang JC, Ishida M, Hersh P, Sugino IK, Zarbin MA. Preparation and transplantation of photoreceptor sheets. Curr. Eye Res. 17, 573-585 (1998).
    [190] Ghosh F, Juliusson B, Arnér K, Ehinger B. Partial and full-thickness neuroretinal transplants. Exp. Eye Res. 68, 67-74 (1999).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE