研究生: |
胡宜禎 |
---|---|
論文名稱: |
具溫度/酸鹼敏感雙重開關之藥物釋放系統 Beads with a Thermo-sensitive Porous-shell and a pH-sensitive Core as a Dual-switched Drug Delivery System |
指導教授: | 宋信文 |
口試委員: |
王麗芳
許明照 邱信程 陳三元 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 47 |
中文關鍵詞: | 溫度敏感性 、酸鹼敏感性 、微流道系統 、藥物釋放 、水膠 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,藉由外在環境如溫度、pH值的變化,進而刺激藥物釋放的藥物載體系統,相較起傳統的藥物載體,精確且有效許多。在體內惡性腫瘤與發炎部位的周圍環境,常同時伴隨著兩種生理因子的變化:一是患部體溫的上升,二是發炎組織 pH值的下降。因此,微米藥物載體經過適切的設計,使其具有雙重刺激的反應,可以增強藥物載體分辨正常與發炎組織的能力,達到更高的標的效率與治療效能。
目前研究顯示,具有多重刺激反應的藥物載體結構複雜、製程較繁複,藥物包覆率、載體均一性、相容性及對患部的反應性仍低。為改善上述問題,我們利用微流道技術設計thermo-sensitive porous shell / pH-sensitive core beads應用於藥物載體系統上,其殼層的結構由PLGA以及gelatin所組成,內部利用NPCS形成一水相的核層,大小約為300μm左右,並可以利用原位注射的方式注入到患部,在患部因為環境因子 (溫度、pH值)改變的刺激,使此載體進行雙開關調控的藥物釋放。第一個開關調控是透過溫度敏感性,當溫度升高超過38℃時,殼層上的gelatin會先融化 (unplug),產生殼層上多孔的通透結構,接著由第二個開關調控,在酸性環境 (pH 6.8~6.0)中,體液通過gelatin融化後的孔洞進入核層,酸敏感性的NPCS水膠會變成溶液態而流出,進行藥物的釋放。
論文中主要分為三大主題。首先利用微流道系統製備均一性高、具有生物相容性、藥物包覆率及球徑大小可簡單控制的微米藥物載體,並觀察其表面型態與內層結構。接著,我們對製備出的藥物載體進行體外釋放 (in vitro)的實驗,以證實此載體具有溫度敏感及pH敏感性,能成為新型具雙重刺激反應功能的藥物載體。最後,我們以即時監測的方式測試載體的動態釋放變化,證實此為一能在患部進行雙開關調控的藥物釋放載體。
1. 張靜宜, 聚癸二酸酐-聚乳酸三團聯共聚物之合成、鑑定及其應用於藥物釋放. 碩士論文, 國立清華大學化學工程學系.
2. 黃培傑, 具酸鹼敏感性可快速釋放藥物之載體系統. 碩士論文, 國立清華大學化學工程學系.
3. Uhrich, K.E., et al., Polymeric systems for controlled drug release. Chemical Reviews, 1999. 99(11): p. 3181-3198.
4. Joosten, U., et al., Evaluation of an in situ setting injectable calcium phosphate as a new carrier material for gentamicin osteomyelitis: Studies in the treatment of chronic in vitro and in vivo. Biomaterials, 2004. 25(18): p. 4287-4295.
5. Takechi, M., et al., Effects of added antibiotics on the basic properties of anti-washout-type fast-setting calcium phosphate cement. Journal of Biomedical Materials Research, 1998. 39(2): p. 308-316.
6. Armstrong, M.S., et al., Mechanical characteristics of antibiotic-laden bone cement. Acta Orthopaedica Scandinavica, 2002. 73(6): p. 688-690.
7. Gbureck, U., J. Probst, and R. Thull, Surface properties of calcium phosphate particles for self setting bone cements. Biomolecular Engineering, 2002. 19(2-6): p. 51-55.
8. Schnieders, J., et al., Controlled release of gentamicin from calcium phosphate-poly(lactic acid-co-glycolic acid) composite bone cement. Biomaterials, 2006. 27(23): p. 4239-49.
9. Trippel, S.B., Antibiotic-impregnated cement in total joint arthroplasty. J Bone Joint Surg Am, 1986. 68(8): p. 1297-302.
10. Waertel, G., The role of antibiotic-loaded cement in the treatment of an infection after a hip replacement. J Bone Joint Surg Am, 1996. 78(3): p. 472-3.
11. Khang, G., et al., Fabrication of tubular porous PLGA scaffold by emulsion freeze-drying method. Polymer-Korea, 1999. 23(3): p. 471-477.
12. Jalil, R. and J.R. Nixon, Biodegradable Poly(Lactic Acid) and Poly(Lactide-Co-Glycolide) Microcapsules - Problems Associated with Preparative Techniques and Release Properties. Journal of Microencapsulation, 1990. 7(3): p. 297-325.
13. Heller, J., Controlled Drug Release from Poly(Ortho Esters). Annals of the New York Academy of Sciences, 1985. 446: p. 51-66.
14. Heller, J., Controlled Release of Biologically-Active Compounds from Bioerodible Polymers. Biomaterials, 1980. 1(1): p. 51-57.
15. Dixit, V., et al., Functional characteristics of primary rat hepatocytes in monolayers and on three-dimensional PLGA scaffold. Gastroenterology, 1999. 116(4): p. A1204-A1204.
16. Oh, J.H., In vivo comparison of corneal substitutes using PLGA scaffold, Type I collagen film, Type I collagen film combined with amniotic membrane and lyophilized homologous cornea. Investigative Ophthalmology & Visual Science, 2002. 43: p. U1190-U1190.
17. Astete, C.E. and C.M. Sabliov, Synthesis and characterization of PLGA nanoparticles. Journal of Biomaterials Science-Polymer Edition, 2006. 17(3): p. 247-289.
18. Kitchell, J.P. and D.L. Wise, Poly(Lactic Glycolic Acid) Biodegradable Drug Polymer Matrix Systems. Methods in Enzymology, 1985. 112: p. 436-448.
19. Kim, H.K., H.J. Chung, and T.G. Park, Biodegradable polymeric microspheres with "open/closed" pores for sustained release of human growth hormone. Journal of Controlled Release, 2006. 112(2): p. 167-174.
20. Chung, H.J., et al., Highly open porous biodegradable microcarriers: In vitro cultivation of chondrocytes for injectable delivery. Tissue Engineering Part A, 2008. 14(5): p. 607-615.
21. Chung, H.J., et al., Heparin immobilized porous PLGA microspheres for angiogenic growth factor delivery. Pharmaceutical Research, 2006. 23(8): p. 1835-1841.
22. Whitesides, G.M., The origins and the future of microfluidics. Nature, 2006. 442(7101): p. 368-373.
23. Choi, S.W., et al., Preparation of Uniform Microspheres Using a Simple Fluidic Device and Their Crystallization into Close-Packed Lattices. Small, 2009. 5(4): p. 454-459.
24. Mehta, G., et al., Hard Top Soft Bottom Microfluidic Devices for Cell Culture and Chemical Analysis. Analytical Chemistry, 2009. 81(10): p. 3714-3722.
25. Wang, J.T., J. Wang, and J.J. Han, Fabrication of Advanced Particles and Particle-Based Materials Assisted by Droplet-Based Microfluidics. Small, 2011. 7(13): p. 1728-1754.
26. Dendukuri, D. and P.S. Doyle, The Synthesis and Assembly of Polymeric Microparticles Using Microfluidics. Advanced Materials, 2009. 21(41): p. 4071-4086.
27. Huang, C.C., et al., Injectable PLGA porous beads cellularized by hAFSCs for cellular cardiomyoplasty. Biomaterials, 2012. 33(16): p. 4069-77.
28. Kim, M.R., et al., Golf ball-shaped PLGA microparticles with internal pores fabricated by simple O/W emulsion. Chem Commun (Camb), 2010. 46(39): p. 7433-5.
29. Choi, S.W., Y. Zhang, and Y.N. Xia, Fabrication of Microbeads with a Controllable Hollow Interior and Porous Wall Using a Capillary Fluidic Device. Advanced Functional Materials, 2009. 19(18): p. 2943-2949.
30. Sung-Wook Choi, Y.-C.Y., Yu Zhang, Hsing-Wen Sung, and Younan Xia, Uniform Beads with Controllable Pore Sizes for Biomedical Applications. small, 2010. 6(No. 14): p. 1492–1498.
31. Choi, S.W., Y. Zhang, and Y.N. Xia, A Temperature-Sensitive Drug Release System Based on Phase-Change Materials. Angewandte Chemie-International Edition, 2010. 49(43): p. 7904-7908.
32. Kumar, M.N.V.R., et al., Chitosan chemistry and pharmaceutical perspectives. Chemical Reviews, 2004. 104(12): p. 6017-6084.
33. Rinaudo, M., Chitin and chitosan: Properties and applications. Progress in Polymer Science, 2006. 31(7): p. 603-632.
34. Montembault, A., C. Viton, and A. Domard, Rheometric study of the gelation of chitosan in aqueous solution without cross-linking agent. Biomacromolecules, 2005. 6(2): p. 653-662.
35. Chiu, Y.L., et al., Rapidly in situ forming hydrophobically-modified chitosan hydrogels via pH-responsive nanostructure transformation. Soft Matter, 2009. 5(5): p. 962-965.
36. Chiu, Y.L., et al., pH-triggered injectable hydrogels prepared from aqueous N-palmitoyl chitosan: In vitro characteristics and in vivo biocompatibility. Biomaterials, 2009. 30(28): p. 4877-4888.
37. Andreev, O.A., et al., Mechanism and uses of a membrane peptide that targets tumors and other acidic tissues in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2007. 104(19): p. 7893-7898.
38. Gallagher, F.A., et al., Magnetic resonance imaging of pH in vivo using hyperpolarized (13)C-labelled bicarbonate. Nature, 2008. 453(7197): p. 940-U73.
39. Masoud, H. and A. Alexeev, Controlled release of nanoparticles and macromolecules from responsive microgel capsules. ACS Nano, 2012. 6(1): p. 212-9.
40. Sankaranarayanan, J., et al., Multiresponse strategies to modulate burst degradation and release from nanoparticles. ACS Nano, 2010. 4(10): p. 5930-6.
41. Torchilin, V.P., Targeted pharmaceutical nanocarriers for cancer therapy and Imaging. Aaps Journal, 2007. 9(2): p. E128-E147.
42. Shenoy, D., et al., Poly(ethylene oxide)-modified poly(beta-amino ester) nanoparticles as a pH-sensitive system for tumor-targeted delivery of hydrophobic drugs: Part 2. In vivo distribution and tumor localization studies. Pharmaceutical Research, 2005. 22(12): p. 2107-2114.
43. Shenoy, D., et al., Poly(ethylene oxide)-modified poly(beta-amino ester) nanoparticles as a pH-sensitive system for tumor-targeted delivery of hydrophobic drugs. 1. In vitro evaluations. Molecular Pharmaceutics, 2005. 2(5): p. 357-366.
44. Shenoy DB, A.M., Poly(ethylene oxide)-modified poly(epsiloncaprolactone)nanoparticles for targeted delivery of tamoxifen in breast cancer. Int. J. Pharm., 2005(293): p. 261-70.
45. Vaupel, P., F. Kallinowski, and P. Okunieff, Blood-Flow, Oxygen and Nutrient Supply, and Metabolic Microenvironment of Human-Tumors - a Review. Cancer Research, 1989. 49(23): p. 6449-6465.
46. Gerweck, L.E. and K. Seetharaman, Cellular pH gradient in tumor versus normal tissue: Potential exploitation for the treatment of cancer. Cancer Research, 1996. 56(6): p. 1194-1198.
47. Wike-Hooley, J.L., J. Haveman, and H.S. Reinhold, The relevance of tumour pH to the treatment of malignant disease. Radiother Oncol, 1984. 2(4): p. 343-66.
48. Ganta, S., et al., A review of stimuli-responsive nanocarriers for drug and gene delivery. Journal of Controlled Release, 2008. 126(3): p. 187-204.
49. Zhang, L.Y., et al., Thermo and pH dual-responsive nanoparticles for anti-cancer drug delivery. Advanced Materials, 2007. 19(19): p. 2988-+.
50. Chiu, Y.L., et al., The characteristics, cellular uptake and intracellular trafficking of nanoparticles made of hydrophobically-modified chitosan. Journal of Controlled Release, 2010. 146(1): p. 152-159.
51. John J. Bozzola, L.D.R., Electron Microscopy, 2nd edition.
52. 沈書甄, 儀器原理與應用.
53. Leary, D.A.S.a.J.J., Principles of Instrumental Analysis,4th edition.
54. 王應瓊, 儀器分析. 中央圖書出版社.