研究生: |
吳怜慧 Ling-Hui Wu |
---|---|
論文名稱: |
鍺覆蓋層對鎳矽化物成長之研究 Effect of Ge Capped Layers on the Formation of Ni Silicide |
指導教授: |
蔡哲正
Cho-Jen Tsai |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 英文 |
論文頁數: | 55 |
中文關鍵詞: | 掃描式電子顯微鏡 、高分辨電子顯微鏡 、能量分析質譜 、二次離子質譜儀 、超高真空臨場鍍膜系統 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用高真空鍍膜系統在室溫中先後沈積鎳(Ni)與鍺(Ge)薄膜於(100)矽晶圓上,再於另一壓力約為2×10-6 torr的真空爐中,於攝氏400至800度高溫退火三小時後,利用掃描式電子顯微鏡(SEM)、高分辨電子顯微鏡(HRTEM)、附能量分析質譜儀(EDX)之穿透式電子顯微鏡(TEM)、與二次離子質譜儀(SIMS)來分析實驗結果,以研究鍺覆蓋層對鎳矽化合物生成之影響。
以往的研究實驗,其鍍膜系統與退火系統皆在同一個真空爐中,而本研究所採用的鍍膜及退火實驗則在不同的真空爐中進行。因為本論文在不同的真空爐中先後進行鍍膜及退火,故鎳會暴露在大氣中和氧產生鍵結,研究結果顯示,在鎳上鍍上一層鍺,可以完全避免鎳的氧化,因此鎳才能和矽產生矽化物。
一般而言,幾個鎳原子層於超高真空臨場鍍膜系統中,約450℃下就可以形成NiSi 2相。由於鍺覆蓋層的影響,本研究發現NiSi 2相的形成有相變化延遲的現象:當鍺覆蓋層厚度為5個原子層時,NiSi 2相的生成溫度延遲至500℃;當鍺覆蓋層厚度為20個原子層時,NiSi 2相的生成溫度延遲至580℃。雖然本論文的實驗流程和以往的超高真空臨場鍍膜系統不同,但其所生長的NiSi 2相與矽基板的磊晶關係是相似的。然而,本論文所生成的NiSi 2長條體之長、寬約在400與60奈米等級,其密度約為1.5x108 cm-2,和以往在相似溫度中,於超高真空臨場鍍膜系統所生成的NiSi 2長條體比較起來,尺寸較小且密度較高。
在Ge (5, 10, 15, 20 ML) / Ni (1 ML) / Si (001)系統中,NiSi 2相沿著<110>方向成長,而且和矽基板磊晶於(111)面。故利用此埋有NiSi 2的矽基板可當做週期性晶格常數變化的模板(template),進而可研究周期性應力場分布之效應。
關鍵詞:掃描式電子顯微鏡、高分辨電子顯微鏡、能量分析質譜儀、二次離子質譜儀、超高真空臨場鍍膜系統
Thin films of Ni (1ML) and Ge (5, 10, 15, 20ML) were deposited on (100) Si substrate in the UHV chamber at room temperature, followed by ex-situ annealing at 400-800℃ for 3 hours in a separate chamber with a base pressure of 2×10-6 torr, and succeeded by characterization of scanning electron microscope (SEM), high resolution transmission electron microscope (HRTEM), transmission electron microscope (TEM) with energy dispersive X-ray spectrometry (EDX), and secondary ion mass spectrometry (SIMS).
Nickel is prevented from oxidation due to the passivation of the Ge capped layer. Therefore, Ni atoms will react with Si substrate to nucleate NiSi 2 in ex-situ experimental procedures. The retardation effect of the Ge capped layer on the formation of NiSi 2 phase was observed. The formation temperature of NiSi 2 phase is 500℃ and 580℃ for the Ge capped layer of 5ML and 20ML, respectively. The crystalographical relation, to the Si substrate, of thus-formed NiSi 2 phase is similar to that obtained from in-situ UHV deposition of a few monolayer of Ni at around 450℃. The size and density of the NiSi 2 facet bars is on the order of 400 nm x 60 nm and 1.5x108 cm-2, respectively, which are much smaller and denser than those obtained by in-situ UHV deposition at comparable temperatures.
In the system of Ge (5, 10, 15, 20 ML) / Ni (1 ML) / Si (100), NiSi 2 phase arranges along <110> direction regularly and has epitaxy with the Si substrate in the (111) planes. The Si substrate including buried NiSi 2 phase is the template with modulating lattice constants. This template can be studied in the periodic distribution of the strain field.
Keywords: scanning electron microscope, high resolution transmission electron microscope, energy dispersive X-ray spectrometry, secondary ion mass spectrometry, in-situ UHV deposition
1-1 郭正彰,蔡哲正“鍺或銥中間層薄膜對鎳矽化物之生成與熱穩定性之研究”, 國立清華大學材料科學工程學系碩士論文, (2002) .
1-2 J. S. Luo, W. T. Lin, C. Y. Chang, and W. C. Tsai, “Pulsed KrF Laser Annealing of Ni/Si0.76Ge0.24 Films”, J. Applied Physics, Vol. 82, pp.3621-3623, (1997).
1-3 J. S. Luo, W. T. Lin, C. Y. Chang, P. S. Shin, and F. M. Pan, “Annealing Effects on the Interfacial Reactions of Ni on Si0.76Ge0.24 and Si1-x-yGexCy”, J. Vac. Sci. Technol. A, Vol. 18, pp.143-148, (2000).
1-4 F. R. Deboer, R. Boom, W. C. Mattens, A. R. Miedema, and A. K. Niessen, “Cohesion in Metal: Transition Metal Alloy”, North Holland, Amsterdam, (1988).
1-5 R. D. Thompson, K. N. Tu, J. Angillelo, S. Delage, and S. S. Lyer, “Interfacial Reaction between Ni and MBE-Grown SiGe Alloy”, J. Electrochem. Soc.: Solid-State Science and Technology, Vol. 135, pp.3161-3163, (1988).
1-6 D. J. Eaglesham, and M. Cerullo, “Dislocation-Free Stranski-Krastanow Growth of Ge on Si(100)”, Phys. Rev. Lett., Vol. 64, pp.1943-1946, (1990).
1-7 Y. W. Mo, D. E. Savage, B. S. Swartzentruber, and M. G. Lagally, “Kinetic Pathway in Stranski-Krastanov Growth of Ge on Si(001)”, Phys. Rev. Lett., Vol. 65, pp.1020-1023, (1990).
1-8 T. I. Kamins, E. C. Carr, R. S. Williams, and S. J. Rosner, “Deposition of Three-Dimensional Ge Islands on Si(001) by Chemical Vapor Deposition at Atmospheric and Reduced Pressures ”, J. Appl. Phys., Vol. 81, pp.211-219, (1997).
1-9 O. G. Schmidt, C. Lange, K. Eberl, O. Kienzle, and F. Ernst, “Formation of Carbon-Induced Germanium Dots”, Appl. Phys. Lett., Vol. 71, pp.2340-2342, (1997).
1-10 O. Leifeld, E. Müller, D. Grützmacher, B. Müller, and K. Kern, “In Situ Scanning Tunneling Microscopy Study of C-Induced Ge Quantum Dot Formation on Si(100)”, Appl. Phys. Lett., Vol. 74, pp.994-996, (1999).
1-11 J. Y. Kim, S. H. Ihm, J. H. Seok, C. H. Lee, Y. H. Lee, E. K. Suh, and H. J. Lee, “Growth Temperature Dependence on the Formation of Carbon-Induced Ge Quantum Dots”, Thin Solid Films, Vol. 369, pp.96-99, (2000).
1-12 Y. Wakayama, G. Gerth, P. Werner, U. Gösele, and L. V. Sokolov, “Structural Transition of Ge Dots Induced by Submonolayer Carbon on Ge Wetting Layer”, Appl. Phys. Lett., Vol. 77, pp.2328-2330, (2000).
1-13 D. J. Coe and H. Rhoderick, “Silicide Formation in Ni-Si Schottky Barrier Deodes”, J. Phys. D, Vol. 9, pp.965-972, (1976).
1-14 S. Lau, J. W. Mayer, and K. N. Tu, “Interactions in the Co/Si Thin-Film System. I. Kinetics ”, J. Appl. Phys., Vol. 49, pp.4005-4010, (1978).
1-15 E. M. Schaller, B. I. Boyanov, S. English, and R. J. Nemanich, “Role of the Substrate Strain in the Sheet Resistance Stability of NiSi Deposited on Si(100)”, J. Appl. Phys., Vol. 85, pp.3614-3618, (1999).
1-16 R. T. Tung, A. F. J. Levi., and J. M. Gibson, “Epitaxial Metal-Semiconductor Structures and Their Properties”, J. Vac. Sci. Technol. B, Vol. 4, pp.1435-1443, (1986).
1-17 F. D’Heurle, C. S. Petrsson, L. Slot, and B. Strizker, “Diffusion in Intermetallic Compounds with the CaF2 Structure: A Marker Study of the Formation of NiSi 2 Thin Films”, J. Appl. Phys., Vol. 53, pp.5678-5681, (1982).
1-18 F. D’Heurle, C. S. Petrsson, J. E. E. Baglin, S. J. La Placa, and C. Y. Wong, “Formation of Thin Films of NiSi: Metastable Structure, Diffusion Mechanisms in Intermetallic Compounds”, J. Appl. Phys., Vol. 55, pp.4208-4218, (1984).
1-19 L. J. Chen, C. M. Doland, I. W. Wu, J. J. Chu, and S. W. Liu, “ Effects of Implantation Impurities and Substrate Crystallinity on the Formation of NiSi 2 on Silicon at 200–280 °C ” , J. Appl. Phys., Vol. 62, pp.2789-2792, (1987).
1-20 M. Y. Lee and P. A. Bennett, “Bulk versus Surface Transport of Nickel and Cobalt on Silicon”, Phys. Rev. Lett., Vol. 75, pp.4460-4463, (1995).
1-21 J. L. Batstone, J. M. Gibson, R. T. Tung, and A. F. J. Levi, “Coreless Defects and the Continuity of Epitaxial NiSi 2/Si(100) Thin Films”, Appl. Phys. Lett., Vol. 52, pp.828-830, (1988).
1-22 R. T. Tung and F. Schrey, “Growth of Epitaxial NiSi 2 on Si(111) at Room Temperature”, Appl. Phys. Lett., Vol. 55, pp.256-258, (1989).
2-1 M. Ohring, “The Materials Science of Thin Films”, Academic Press, pp.197, (1992).
2-2 C. V. Thompson, J. Y. Tsao, and D. J. Srolovitz, “Evolution of Thin-Film and Surface Microstructure”, Materials Research Society, pp.555, (1991).
2-3 M. Asai, H. Ueba, and C. Tatsuyama, “Heteroepitaxial Growth of Ge Films on the Si(100)-2×1 Surface”, J. Appl. Phys., Vol. 58, pp.2577-2583, (1985).
2-4 J. P. Bevk, J. P. Mannaerts, L. C. Feldman, B. A. Davidson, and A. Ourmazd, “Ge-Si Layered structures: Artificial Crystals and Complex Cell Ordered Superlattices”, Appl. Phys. Lett., Vol. 49, pp.286-288, (1986).
2-5 R. S. Williams, G. M. Ribeiro, T. I. Kamins, and D. A. A. Ohlberg, “Equilibrium Shape Diagram for Strained Ge Nanocrystals on Si (001)”, J. Phys. Chem. B, Vol. 102, pp.9605-9609, (1998).
2-6 R. S. Williams, G. M. Ribeiro, T. I. Kamins, and D. A. A. Ohlberg, “Chemical Thermodynamics of the Size and Shape of Strained Ge Nanocrystals Grown on Si(001)”, Acc. Chem. Res., Vol. 102, pp.425-433, (1999).
2-7 G.. M. Ribeiro, A. M. Bratkovski, T. I. Kamins, D. A. A. Ohlberg, and R. S. Williams, “Shape Transition of Germanium Nanocrystals on a Silicon (001) Surface from Pyramids to Domes”, Science, Vol. 279, pp.353-355, (1998).
2-8 W. L. Henstorm and C. P. Liu, “Dome-to-Pyramid Shape Transition in Ge/Si Islands Due to Strain Relaxation by Interdiffusion”, Appl. Phys. Lett., Vol. 77, pp. 1623-1625, (2000).
2-9 F. M. Ross, J. Tersoff, and R. M. Tromp, “Coarsening of Self-Assembled Ge Quantum Dots on Si(001)” , Phys. Rev. Lett., Vol. 80, pp.984-987, (1998).
2-10 V. A. Shchukin, N. N. Ledentsov, P. S. Kop’ev, and D. Bimberg, “Spontaneous Ordering of Arrays of Coherent Strained Islands”, Phys. Rev. Lett., Vol. 75, pp.2968-2971, (1995).
2-11 M. Copel, M. C. Reuter, E. Kaxiras, and R. M. Tromp, “Surfactants in Epitaxial Growth“, Phys. Rev. Lett., Vol. 63, pp.632-635, (1989).
2-12 M. Katayama, T. Nakayama, M. Aono, and C. F. McConville, “Influence of Surfactant Coverage on Epitaxial Growth of Ge on Si(001)”, Phys. Rev. B, Vol. 54, pp.8600-8604, (1996).
2-13 M. Copel, M. C. Reuter, M. H. Hoegen, and R. M. Tromp, “Influence of Surfactants in Ge and Si Epitaxy on Si(001)”, Phys. Rev. B, Vol. 42, pp.11682-11689, (1990).
2-14 H. Hibino, N. Shimizu, K. Sumitomo, Y. Shinoda, T. Nishioka, and T. Ogino, “Pb Preadsorption Facilitates Island Formation During Ge Growth on Si(111)”, J. Vac. Sci. Technol., Vol. 12, pp.23-28, (1994).
2-15 T. I. Kamins, G. M. Ribeiro, D. A. A. Ohlberg, and R. S. Williams, “Influence of Phosphine on Ge/Si(001) Island Growth by Chemical Vapor Deposition”, J. Appl. Phys., Vol. 94, pp.4215-4224, (2003).
2-16 T. I. Kamins, G. A. D. Briggs, and R. S. Williams, “Influence of HCl on the Chemical Vapor Deposition and Etching of Ge Islands on Si(001)”, App. Phys. Lett., Vol. 73, pp.1862-1864, (1998).
2-17 R. Pretorius, C. C. Theron, A. Vantomme, and J. W. Mayer, “Compound Phase Formation in Thin Film Structures”, Critical Reviews in Solid State and Material Science, Vol. 24, pp.1-62, (1991).
2-18 R. T. Tung, J. M. Gibson, J. M. Poate, “Formation of Ultrathin Single-Crystal Silicide Films on Si: Surface and Interfacial Stabilization of Si-NiSi 2 Epitaxial Structures”, Phys. Rev. Lett., Vol. 50, pp.429-432, (1983).
2-19 J. E. E. Baglin and J. M. Poate, “Thin Film Interfaces and Interactions”, Electrochemical Society, Princeton N. J., (1980).
2-20 I. Ono, M. Yoshimura, and K. Ueda, “Atomic Study of Nickel Silicide Structures on Si(100) by Tunneling Microscopy”, J. Vac. Sci. Technol. B, Vol. 16, pp.2947-2951, (1992).
2-21 M. Y. Lee and P. A. Bennett, “Bulk versus Surface Transport of Nickel and Cobalt on Silicon”, Phys. Rev. Lett., Vol. 75, pp.4460-4463, (1995).
2-22 J. M. Poate, K. N. Tu, and J. W. Mayer, “Thin Film Interdiffusion and Reactions”, Willey, New York, (1978).
2-23 F. Comin, J. E. Rowe, and P. H. Citrin, “Structure and Nucleation Mechanism of Nickel Silicide on Si(111) Derived from Surface Extended-X-Ray-Absorption Fine Structure”, Phys. Rev. Lett., Vol. 51, pp.2402-2405, (1983).
2-24 J. M. Gibson and J. L. Batstone, “In-Situ Transmission Electron Microscopy of NiSi 2 Formation by Molecular Beam Epitaxy”, Surf. Sci., Vol. 208, pp.317-350, (1989).
2-25 J. P. Sillivan, R. T. Tung, and F. Schery, “Control of Interfacial Morphology: NiSi 2/Si(100)”, J. Appl. Phys., Vol. 72, pp.478-489, (1992).
4-1 S. Coffa, J. M. Poate, D. C. Jacobson, W. Frank, and W. Gustin, “Determination of Diffusion Mechanisms in Amorphous Silicon”, Phys. Rev. B, Vol. 45, pp.8355-8358, (1992).
4-2 A. Yu. Kuznetsov and B. G. Svensson, “Nickel Atomic Diffusion in Amorphous Silicon”, Appl. Phys. Lett., Vol. 66, pp.2229-2231, (1995).
4-3 L. Gregoratti, S. Günther, J. Kovac, M. Marsi, R. J. Phaneuf, and M. Kiskinova, “Ni/Si(111) System: Formation and Evolution of Two- and Three-Dimensional Phases Studied by Spectromicroscopy”, Phys. Rev. B, Vol. 59, pp.2018–2024, (1999).