簡易檢索 / 詳目顯示

研究生: 李培源
Li, Pei-Yuan
論文名稱: 以聚焦離子束製備超導奈米懸橋
The fabrication of superconducting suspended nano-bridge structure by using focused ion beam
指導教授: 陳正中
Chen, Jeng-Chung
口試委員: 吳憲昌
Wu, Cen-Shawn
林大欽
Ling, Dah-Chin
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 81
中文關鍵詞: 聚焦離子束超導體奈米懸橋
外文關鍵詞: focused ion beam (FIB), superconductor, nano, suspended bridge
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 製造穩定的超導點接觸是實現超導量子彈道裝置的關鍵,本論文致力於開發一種利用聚焦離子束(FIB)制定超導體鋁(Al)奈米結的技術。我們對離子撞擊鋁薄膜和矽基板進行SRIM-2013/TRIM的蒙地卡羅模擬,建立模擬與實驗的關聯,使我們能夠估計實驗所需的銑削條件。通過利用鋁薄膜和矽基板銑削速率和濺射率的變化,我們能夠在鋁觸點下雕刻矽,使薄膜變薄並形成尺寸約為30奈米的三維懸橋。我們測量嵌入在SQUID結構之奈米觸點的電流與電壓特性,發現明顯的次諧波間隙特徵和超電流。在間隙狀態中觀察到的強非線性表明了耗散性質,並表明在奈米點接觸中發生了多重安德列夫反射。我們的工作可能為開發超導量子點接觸裝置開闢一條路徑,例如安德列夫量子位元,以及一種修復超導電路的方法。


    Fabricating a stable superconducting point contact is key challenge to realize superconducting quantum ballistic device. This thesis is devoted to develop a technique to tailor a superconducting aluminum (Al) adjacent nano-point junctions by using focused ion beam (FIB). We perform the SRIM-2013/TRIM Monte Carlo simulation to Al thin film and Si-substrate under the impinging of ions, and subsequently correlate the estimated displacement depth to the milling rate as a function of ion dosages in experiments, thus establish an empirical rule to guide us the milling conditions. By utilizing variance of milling rate and sputter yield of Al thin film and Si-substrate, we are able engrave the Si underneath Al contacts, thinner the film and form a suspended three-dimensional nano-bridge with size about 30 nm. We measure the current vs. voltage I(V) characteristics of the nano-contacts embedded in a SQUID geometry, and find distinct subharmonic gap features and a super-current. The observed strong non-linearities in the gap regime indicates a dissipative nature and suggest the occurrence of multiple Andreev-reflection in the nano-point contacts.
    Our work could potentially open a route for developing superconducting quantum point contact devices, e.g. Andreev qubits, and a way to repair superconducting circuits.

    摘要…………………………………………………...………………………………..i Abstract…………………………….…………………………………….……………ii 致謝………………...…………………………………………………………………iii 目錄……………………………………………………………………………...……iv 第一章 緒論 1.1 研究動機………….…………………………………………………………1 1.2 文獻回顧..………..……………………………………………….…………2 第二章 背景知識 2.1 約瑟芬結(Josephson junction)……………………………………………..10 2.1.1 約瑟芬方程式(Josephson equations)………………………….………10 2.2 電流-電壓特性(Current-voltage characteristics)…………………...…......12 2.3 直流超導量子干涉儀(DC-SQUID)……………………...……………..…13 2.4 超導量子點接觸(Superconducting quantum point contact)………………15 2.4.1 安德列夫反射(Andreev reflection)………………………………..….17 2.4.2 安德列夫束縛態(Andreev bound state)…………………………...….18 第三章 樣品製作儀器及原理 3.1 掃描式電子顯微鏡(Scanning Electron Microscope,SEM)……………….19 3.1.1 掃描式電子顯微鏡的基本原理………………………………...….…20 3.1.2 掃描式電子顯微鏡的基本構造…………………………..….….……21 3.2 聚焦離子束(Focused Ion Beam,FIB) ……………………………………22 3.2.1 聚焦離子束系統的基本原理……………………………….…….…..22 3.2.2 聚焦離子束系統的基本構造…………………………………………23 3.2.3 聚焦離子束系統的成像反應………………………….…………..….28 3.2.4 聚焦離子束系統的劑量影響…………………………………………40 3.3 原子力顯微鏡(Atomic Force Microscope,AFM) …………………..……46 3.3.1 原子力顯微鏡的基本原理……………………………...…………….46 3.3.2 原子力顯微鏡的基本構造…………..…………………..……………47 3.3.3 原子力顯微鏡的成像反應……………………………………………49 3.4 樣品的設計….……………………………………………………………..50 第四章 實驗量測 4.1 樣品參數…………………………………………………………………...51 4.2 電流-電壓特性…………………………………………………………….54 4.2.1改變溫度下,電流-電壓特性………………………………………….56 4.2.2 改變磁場下,電流-電壓特性…………………………………………58 第五章 總結與未來展望 附錄A 樣品備製……………………………………………………………….62 附錄B 樣品載台(Sample holder)與超導小線圈設計…………..……………63附錄C 磁場估計…….…………………………………………………………67 附錄D 電阻估計…………………………………………………….…………68 D.1 電阻的理論估計…………………………………………...…………...68 D.2 電阻的實際量測……………………………………………...…...……69 D.3 四點量測(Four-point measurement)……………………………………70 附錄E 臨界電流估計……………………………………………….…………72 附錄F 實驗架設…………………………………………………….…………74 附錄G 微波量測…………………………………………………….…………76 參考文獻……………………………………………………………………………..78

    [1] Zagoskin, Alexandre, and Alexandre Blais. "Superconducting qubits." arXiv preprint arXiv:0805.0164 (2008).
    [2] Devoret, Michel H., Andreas Wallraff, and John M. Martinis. "Superconducting qubits: A short review." arXiv preprint cond-mat/0411174 (2004).
    [3] Liu, Xuejing, et al. "Research on mechanism and structure of all-fiber weak magnetic field atomic sensing." 2017 16th International Conference on Optical Communications and Networks (ICOCN). IEEE, 2017.
    [4] Hasnat, Abul. "Performance optimization of the nano-sized pick-up loop of a dc-SQUID." Physica C: Superconductivity and its Applications 583 (2021): 1353852.
    [5] Weinstock, Harold, and William C. Overton Jr, eds. SQUID applications to geophysics. Society of Exploration Geophysicists, 1981.
    [6] Donaldson, G. B., et al. "Progress in the use of SQUIDs for Electromagnetic Nondestructive Evaluation." Advances in Superconductivity VIII. Springer, Tokyo, 1996. 27-32.
    [7] Granata, Carmine, and Antonio Vettoliere. "Nano superconducting quantum interference device: A powerful tool for nanoscale investigations." Physics Reports 614 (2016): 1-69.
    [8] Wernsdorfer, Wolfgang. "From micro-to nano-SQUIDs: applications to nanomagnetism." Superconductor Science and Technology 22.6 (2009): 064013.
    [9] Keijers, Wout, et al. "Nano-SQUIDs with controllable weak links created via current-induced atom migration." Nanoscale 10.45 (2018): 21475-21482.
    [10] Chatterjee, A., et al. "Shaping single atomic junctions in ultra-thin Ag structures by electromigration." Applied Physics Letters 113.1 (2018): 013106.
    [11] Cybart, Shane A., et al. "Nano josephson superconducting tunnel junctions in YBa_2 〖Cu_3 O〗_(7-δ) directly patterned with a focused helium ion beam." Nature nanotechnology 10.7 (2015): 598-602.
    [12] Hao, Ling, et al. "Fabrication and analogue applications of nanoSQUIDs using Dayem bridge junctions." IEEE Journal of Selected Topics in Quantum Electronics 21.2 (2014): 1-8.
    [13] Irie, Hiroshi, et al. "Josephson coupling through one-dimensional ballistic channel in semiconductor-superconductor hybrid quantum point contacts." Physical Review B 89.16 (2014): 165415.
    [14] 張裕恒. 超導物理. 中國科學技術大學出版社,2009.
    [15] Wang, Lujun. Fabrication stability of Josephson junctions for superconducting qubits. Diss. Master thesis, Technische Universität München, 2015.
    [16] Van Duzer, Theodore, and Charles William Turner. "Principles of superconductive devices and circuits." (1981).
    [17] Clarke, John, and Alex I. Braginski, eds. The SQUID handbook: Applications of SQUIDs and SQUID systems. John Wiley & Sons, 2006.
    [18] Bretheau, L., et al. "Superconducting quantum point contacts." Comptes Rendus Physique 13.1 (2012): 89-100.
    [19] Ronen, Yuval, et al. "Charge of a quasiparticle in a superconductor." Proceedings of the National Academy of Sciences 113.7 (2016): 1743-1748.
    [20] Sezen, Meltem, and M. Janecek. "Focused Ion Beams (FIB)—Novel methodologies and recent applications for multidisciplinary sciences." Modern Electron Microscopy in Physical and Life Sciences (2016).
    [21] Ziegler, James F., Matthias D. Ziegler, and Jochen P. Biersack. "SRIM–The stopping and range of ions in matter (2010)." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 268.11-12 (2010): 1818-1823.
    [22] Stoller, Roger E., et al. "On the use of SRIM for computing radiation damage exposure." Nuclear instruments and methods in physics research section B: beam interactions with materials and atoms 310 (2013): 75-80.
    [23] Ziegler, James F. "SRIM-2003." Nuclear instruments and methods in physics research section B: Beam interactions with materials and atoms 219 (2004): 1027-1036.
    [24] Xu, Z. W., et al. "Fabrication of micro/nano-structures using focused ion beam implantation and XeF_2 gas-assisted etching." Journal of Micromechanics and Microengineering 19.5 (2009): 054003.
    [25] Greenzweig, Yuval, et al. "Current density profile characterization and analysis method for focused ion beam." Microelectronic Engineering 155 (2016): 19-24.
    [26] Li, Yuan, et al. "An experiment-based method for focused ion beam milling profile calculation and process design." Sensors and Actuators A: Physical 286 (2019): 78-90.

    QR CODE