研究生: |
巫宗曄 Chung-Yeh Wu |
---|---|
論文名稱: |
450V 橫向型金氧半場效電晶體之強健化分析 The Aalysis of Ruggedness on 450V LDMOSFET |
指導教授: |
龔正
J. Gong |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 76 |
中文關鍵詞: | 強健化 、橫向型金氧半場效電晶體 、450V 、強健 |
外文關鍵詞: | LDMOSFET, rugged, reggedness, 450V, LDMOS |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中,我們利用TCAD軟體設計額定崩潰電壓為450V的LDMOSFET,並在導通電阻與崩潰電壓間取得平衡點,使其能兼顧低導通電阻與高崩潰電壓。分析崩潰後元件電流分佈的情形,發現元件從汲極端發生崩潰,電流集中在源極下方的接面處流出源極。
為了使元件更為「強健」,我們必須盡量分散元件崩潰時電流的分佈。我們在汲極下方加入一n型適應層,並觀察其電流分佈改善的情形。通過P型井與磊晶層間接面處的電流,原先幾乎集中在源極下方,加入n型適應層後,元件崩潰的位置改為通道的邊緣,因此部分電流改由通道邊緣流出源極,電流分佈因此較為分散。調整通過源極下方與通道邊緣兩處的電流,使其幾乎相等,則能得到最均勻的電流分佈,元件也最為「強健」。
In this thesis, we use TCAD simulation software to design a 450V LDMOSFET. We adjust the parameters to make the device have not only low turn-on resistance but also high breakdown voltages. Through analyzing the device’s currents’ distribution after it has broken down, we can find out that the breakdown occurs at drain edge. Most of the currents gather at the junction beneath the source contact and then flow out the source.
To make the device more “rugged”, it is important to disperse the device’s breakdown currents as uniform as possible. We add an n-type adaptive layer under drain region to improve the currents’ distribution. Without n-type adaptive layer, most of the device’s currents gather at the junction beneath the source contact. The position where breakdown occurs is shifted from drain edge to channel edge. Thus part of the currents flow through the channel edge then out of the source. And the currents are more dispersed. Adjusting the currents flowing through the junction beneath the source region and the channel edge, when the currents flow through the two regions are almost equal, the currents’ distribution will be most uniform. And we can get the most “rugged” devices.
[1] Keneeth Dierberger, “Understanding the difference between standard MOSFETs and avalanche energy rated MOSFETs”, APT9402, Advanced Power Technology, 1994.
[2] J. A. Appels and H. M. J. Vaes, “High-voltage thin layer devices (RESURF devices)”, IEDM Tech. Dig., pp. 238-239, 1979.
[3] J. A. Appels, M. G. Collet, P. A. H. Hart, H. M. J. Vaes and J. F. C. M. Verhoeven, “Thin layer high-voltage devices (RESURF devices)”, Vol.35, Philips. J. Res., pp. 1-13, 1980.
[4] Min Liu, C. A. T. Salama, P. Schvan and M. King, “A fully resurfed, BiCMOS-compatible, high voltage MOS transistor”, ISPSD ’96, pp. 143-146
[5] A. W. Ludikhuize, “Design aspect of high voltage devices for a 700-1200V IC process”, Proc. Symp. on High Voltage and Smart Power ICs, pp. 133-138, 1989.
[6] Nezar and C. A. T. Salama, “Breakdown voltage in LDMOS transistors using internal field rings”, IEEE Trans. Electron Devices, Vol. 38, No. 7, July 1991.
[7] P. Ratnam, “Novel silicon-on-insulator MOSFET for high-voltage integrated circuits”, Electronics Letters, Vol.25, No. 8, pp. 536-537, April 1989.
[8] J. G. Mena, and C. A. T. Salama, “High-voltage multiple-resistivity drift-region LDMOS”, Energy, Vol. 20, Issu. 12, pp. 1313-1314, Dec. 1995.
[9] Serag E. D. Habib, “The ALDMOST: a new power MOS transistor”, IEEE Trans. Electron Device, Vol. ED-8, No. 6, pp. 257-259, Jun. 1987.
[10] Mueng-Ryul Lee and Oh-Kyong Kwon, “High performance extended drain MOSFETs (EDMOSFETs) with metal field plate”, ISPSD ’99, pp. 249-252.
[11] Shuming Xu, Yuanzheng Zhu, Pang-Dow Foo, Yung C. Liang, and Johnny. K. O. Sin, “Folded gate LDMOS with low on-resistance and high transconductance”, ISPSD ‘2000, pp. 55-58.
[12] Donald A. Neaman, “Semiconductor Physics & Devices: Basic Principles”, 2nd ed., New York, McGraw-Hill, 1997.
[13] Yuan Taur, Tak H. Ning, “Fundamentals of Modern VLSI Devices”, New York, Cambridge University Press, 2000.
[14] B. Jayant Baliga, “Power Semiconductor Devices”, Boston, PWS, 1996.
[15] W. Fulop, “Calculation of avalanche breakdown voltage of silicon p-n junctions”, Solid-St. Electronics, Vol. 10, pp. 39-43, 1967.
[16] Seung-Youp Han, Jong-Ming Na, Yearn-Ik Choi, Jin-Cheol Shin, and Sang-Koo Chung, “An analytical model of the breakdown voltage and minimum epi layer length for RESURF pn diodes”, Solid-St. Electronics, Vol. 39, No. 8, pp. 1247-1248, 1996.
[17] S.-Y. Han, H.-W. Kim, S.-K. Chung, “Surface field distribution and breakdown voltage of RESURF LDMOSFETs”, Microelectronics Journal 31, pp.685-688, 2000.
[18] Jin. He and Xing Zhang, “Quasi-2-D analytical model for the surface field distribution and optimization of RESURF LDMOS transistor”, Microelectronics Journal 32, pp. 655-663, 2001.
[19] R. Borras, P. Aloisi, D. Shumate, “Avalanche capability of today’s power semiconductor”, Fifth European Conference on Power Electronics and Applications, Vol. 2, pp. 167- 172, Sep. 1993.
[20] Tim McDonald, Macro Soldano, Anthony Murray, Teodor Avram, “Power MOSFET avalanche design guidelines application notes”, AN - 1005, Rev. 1.0, International Rectifier.
[21] A. Ludikhuize, “Kirk effect limitations in high-voltage ICs”, Proc. ISPSD ’94, pp.249-252.
[22] Kazunori Kawamoto, Shigeki Takahashi, Seiji Fujino, and Isao Shirakawa, “A no-snapback LDMOSFET with automotive ESD endurance”, IEEE Trans. Electron Devices, Vol. 49, No. 11, pp. 2047-2052, Nov. 2002.
[23] P. L. Hower and V. G. K. Reddi, “Avalanche injection and second breakdown in transistors”, IEEE Tran. Electron Devices, Vol. ED-17, No. 4, pp.320-335, April 1970.
[24] D. L. Blackburn, “Turn-off failure of power MOSFETs”, IEEE Trans. Power Electronics, Vol.PE-2, No.2, pp.136-142, April 1987.
[25] S. Krishna, and P. L. Hower, “Second breakdown of transistors during inductive turn off”, Proc. of IEEE, Vol. 62, March 1973.
[26] John P. Phipps and Kim Gauen, “New insights affect power MOSFET ruggedness”, APEC’ 88, pp. 290-298, Feb. 1988.
[27] Kevin Fisher and Krishna Shenai, “ Ultra-high performance rugged scaled power MOSFETs for high-frequency power conversion”, APEC '96, Vol. 1, pp. 270-275, March 1996.
[28] Kazunori Kawamoto and Shigeki Takahashi, “An advanced no-snapback LDMOSFET with optimized breakdown characteristics of drain n-n+ diodes”, IEEE Trans. Electron Devices, Vol. 51, No. 9, pp. 1432-1440, Sep. 2004.