簡易檢索 / 詳目顯示

研究生: 葉敬群
論文名稱: 利用射頻電漿輔助化學氣相沈積法以四氯化矽為前驅物成長矽薄膜
The deposition of silicon thin film by RF PE-CVD using silicon tetrachloride as precursor
指導教授: 戴念華
李紫原
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 76
中文關鍵詞: 四氯化矽電漿前驅物
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 以四氯化矽為前驅物、玻璃及n-type (100) silicon為基板,利用射頻能量分解四氯化矽來進行矽薄膜沈積。本研究工作組裝以吹拂方式帶出前驅物的電漿系統,並由X光粉末繞射儀(X-ray diffractometer, XRD)、傅立葉紅外線光譜儀(Fourier transform infrared spectroscopy, FTIR)、拉曼光譜儀(Raman spectroscopy, Raman)、電子能譜儀(Eletron spectroscopy for chemical analysis, ESCA)及掃描式電子顯微鏡(Scanning electron microscopy, SEM)分析實驗所得的低含氧量矽薄膜。
    為了能得到低含氧量的矽薄膜,本研究以不同的實驗條件製作矽薄膜並比較不同參數對於矽薄膜沈積的影響。針對氫氣流量而言,本實驗設定的氫氣參數範圍在於15-90 sccm之間,在範圍內氫氣流量越大對於沈積矽薄膜越有幫助,原因在於需要大量的氫氣來分解前驅物的矽氯鍵結,以防氧化矽的產生。氬氣的最佳流量介於10~15 sccm之間,不同於氫氣,氬氣主要扮演電漿輔助的角色,太大或太小對於矽薄膜沈積都是負面影響。另外,本實驗的電源輸出功率從200 W提高至400 W,在沒有加熱器的狀況下,使用較高功率可以對基板提供些微的熱源以利於非晶矽的成長。本實驗工作的結論是:利用射頻電漿輔助化學氣相沈積法成長非晶矽的薄膜,在沒有加熱源的情況下最佳的參數是功率400 W,氬氣流量 10 sccm和氫氣流量 15 sccm。


    摘 要…………………………………………………………………………………I Abstract………………………………………………………………………………II 致謝………………………………………………………………………………….III 目錄…………………………………………………………………………………..V 圖目錄……………………………………………………………………………..VIII 表目錄………………………………………………………………………………XII 第一章 序論 1 1.1 概述 1 1.2 研究動機 3 第二章 文獻回顧 5 2.1 太陽能電池基本原理 5 2.1.1 電路模型 6 2.1.2 太陽光的照度 8 2.2 太陽能電池的製程 9 2.3 矽薄膜電池 12 2.4 其他類太陽能電池 14 第三章 實驗 18 3.1 儀器組裝 18 3.1.1 管線配置 18 3.1.2 前驅物 19 3.2 實驗前置作業 19 3.2.1 試片準備 20 3.2.2 冷劑配製 20 3.2.3 壓力 20 3.3 實驗流程 21 3.3.1 腔體回復 21 3.4 試片分析 21 第四章 結果與討論 30 4.1 參數測試 30 4.1.1 真空度限制 30 4.1.2 反應氣體流量 30 4.1.3 冷劑調配 31 4.2 不同參數影響比較 32 4.3 ESCA表面分析 38 4.4 X-ray繞射分析 41 4.5 FTIR圖 42 第五章 總結 67 第六章 參考文獻 69

    [1] M. Grätzel, “Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells.” J. Photochem. Photobiol, A Chem. 164, 3 (2004)
    [2] A. G. Aberle, “Surface passivation of crystalline silicon solar cell: A review.” Prog. Photovolt: Res. Appl. 8, 473-487 (2000)
    [3] S. Rivillon, F. Amy, Y. J. Chabal, “Gas phase chlorination of hydrogen-passivated silicon surfaces.” Appl. Phys. Lett. 85, 13 (2004)
    [4] Rolf. Brendel, Thin-Film Crystalline Silicon Solar Cell:Physics and Technology. , Strauss Offsetdruck GmbH, Mörlenbach, Germany, (2003)
    [5] A. Fantoni, M. Viera, R. Martins, “Influence of the intrinsic layer characteristics on a-Si:H p-i-n solar cell performance analysed by means of a computer simulation.” Sol. Energy Mater. Sol. Cells. 73, 151-162 (2002)
    [6] T. Söderström, F. –J. Haug, V. Terrazzoni-Daudrix, C. Ballif, “Flexible micromorph tandem a-Si/μc-Si solar cell.” J. Appl. Phys. 107, 014507 (2010)
    [7] H. J. Moeller, “Semiconductor for Solar Cells.” Artech House, London, (1993)
    [8] 蔡進譯, 物理雙月刊 (廿七卷五期) 2005年 10月,中華民國物理學會
    [9] 施敏, 半導體元件物理與製作技術, pp478-479, 第二板, 1980,國立交通大學出版社
    [10] R. Hulstrom, R. Bird, C. Riordan, “Spectral solar Irradiance Data Sets for Selected Terrestrial Condition.” Solar Cells, 365, 15 (1985)
    [11] B. Hoex, J. J. H. Gielis, M. C. M. van de Sanden, W. M. M. Kessels, “On the c-Si surface passivation mechanism by the negative-charge-dielectric Al2O3.” J. Appl. Phys. 104, 113703 (2008)
    [12] P. Obermeyer, C. Haase, H. Stiebig, “Advanced light trapping management by diffractive interlayer for thin-film silicon solar cells. ” Appl. Phys. Lett. 92, 181102 (2008)
    [13] L. Zeng, P. Bermel, Y. Yi, B. A. Alamariu, K. A. Broderick, J. Liu, C. Hong, X. Duan, J. Joannopoulos, L. C. Kimerling, “Demonstration of enhanced absorption in thin film Si solar cells with textured photonic crystal back reflector.” Appl. Phys. Lett. 93, 221105 (2008)
    [14] F.-J. Haug, T. Söderström, O. Cubero, V. Terrazzoni-Daudrix, C. Ballif, “Plasminic absorption in textured silver back reflectors of thin film solar cells.” J. Appl. Phys. 104, 064509 (2008)
    [15] W. J. Soppe, C. Devilee, M. Geusebroek, J. Löffler, H.–J. Muffler, “The effect of argon dilution on deposition of microcrystalline silicon by microwave plasma enhanced chemical vapor deposition.” Thin Solid Films 515 7490-7494 (2007)
    [16] T. Belmonte, R. P. Cardoso, C. Noël, G. Henrion, F. Kosior, “Microwave plasmas at atmospheric pressure: theoretical insight and applications in surface treatment.” Eur. Phys. J. Appl. Phys. 42, 41-46 (2008)
    [17] H. Schlemm, A. Mai, S. Roth, D. Roth, K. –M. Baumgärtner, H. Muegge, “Industrial large scale silicon nitride deposition on photovoltaic cells with linear microwave plasma sources.” Surf. Coat. Technol. 174-175 208-211 (2003)
    [18] L. H. Teng, W. A. Anderson, “Thin film transistors on nanocrystalline silicon directly deposited by a microwave plasma CVD.” Solid-State Electron. 48, 309-314 (2004)
    [19] Y. Li, Y. Ikeda, T. Saito, H. Shirai, “Si thin-film solar cells using SiH2Cl2 by rf plasma-enhanced chemical vapor deposition.” Thin Solid Films 511-512 46-50 (2006)
    [20] T. C. Wong, J. J. Wu, “Effects of silicon teteachloride concentration on nanocrystalline silicon films growth.” Thin Solid Films 437 45-50 (2003)
    [21] B. Rech, T. Roschek, J. Müller, S. Wieder, H. Wagner, “Amorphous and microcrystalline silicon solar cells prepared at high deposition rates using RF(13.56 MHz) plasma excitation frequencies. ” Sol. Energy Mater. Sol. Cells. 66, 267-273 (2001)
    [22] C. Z. Chen, S. H. Qiu, C. Q. Liu, Y. D. Wu, P. Li, C. Y. Yu, X. Y. Lin, “Low temoerature fast growth of nanocrystalline silicon films by RF-PECVD from SiH4/H2 gases: microstructural characterization.” J. Phys. D: Appl. Phys. 41 195413 (2008)
    [23] J. L. Walsh, F. Iza, M. G. Kong, “Atmospheric glow discharges from the high-frequency to very high-frequency bands.” Appl. Phys. Lett. 93, 251502 (2008)
    [24] J. K. Rath, Y. Liu, M. Brinza, A. Verkerk, C. Bommel, A. Borreman, R. E.I. Schropp, “Recent advances in very high frequency plasma enhanced CVD process for the fabrication of thin film silicon solar cells.” Thin Solid Films 517 4758-4761 (2009)
    [25] J. K. Saha, K. Haruta, M. Yeo, T. Koabayshi, H. Shirai, “Rapid crystallization of amorphous silicon utilizing a very-high-frequency microplasma jet for Si thin film solar cells.” Sol. Energy Mater. Sol. Cells. 93, 1154-1157 (2009)
    [26] N. Salivati, Y. Q. An, M. C. Downer, J. G. Ekerdt, “Hot-wire chemical vapor deposition of silicon nanoparticles on fused silica.” Thin solid film 517 3481-3483 (2009)
    [27] N. Salivati, Y. Q. An, M. C. Downer, J. G. Ekerdt, “Hot-wire chemical vapor deposition of silicon nanoparticles on fused silica.” Thin Solid Films 517 3481-3483 (2009)
    [28] B. R. Wu, D. S. Wuu, M. S. Wan, W. H. Huang, H. Y. Mao, R. H. Horng, Sol. “Fabrication of nc-Si/c-Si solar cells using hot-wire chemical vapor deposition and laser annealing.” Energy Mater. Sol. Cells. 93, 993-995 (2009)
    [29] T. Belmonte, R. P. Cardoso, C. Noël, G.Henrion, F. Kosior, Eur. Phys. “Microwave plasma at atmospheric pressure: theoretical insight and applications in surface treatment.” J. Appl. Phys. 42, 41-46 (2008)
    [30] F. Wünsch, D. Klein, A. Podlasly, A. Ostmann, M. Schmidt, M. Kunst, “ Low-temperature contacts through SixNy-antireflection coatings for inverted a-Si:H/c-Si hetero-contact solar cells.” Sol. Energy Mater. Sol. Cells. 93, 1024-1028 (2009)
    [31] X. J. Hao, E-C. Cho, C. Flynn, Y. S. Shen, S. C. Park, G. Conibeer, M.A. Green, “Synthesis and characterization of boron-doped Si quantum dots for all-Si quantum dot tandem solar cells.” Sol. Energy Mater. Sol. Cells. 93, 273-279 (2009)
    [32] C. Das, A. Doumit, F. Finger, A. Gordijn, J. Huepkes, J. Kirchhoff, A. Lambertz, T. Melle, W. Reetz, Sol. “Performance of superstrate multijunction amorphous silicon-based solar cells using optical layer for current management.” Energy Mater. Sol. Cells. 93, 973-975 (2009)
    [33] Y. Nasuno, N. Kohama, K. Nishimura, T. Hayakawa, H. Taniguchi, M. Shimizu, “Effect of perforated transparent electrodes on light transmittance and light scattering in substrates used for microcrystalline silicon thin-film solar cells.” Appl. Phys. Lett. 88, 071909 (2006)
    [34] A. Chowdhury, S. Mukhopadhyay, S. Ray, “Fabrication of thin film nanocrystalline silicon solar cell with low light-induced degradation.” Sol. Energy Mater. Sol. Cells. 93, 597-603 (2009)
    [35] J. M. Pearce, J. Deng, R. W. Collins, C. R. Wronski, “Light-induced defect states in hydrogenated amorphous silicon centered around 1.0 and 1.2 eV from the conduction band edge.” Appl. Phys. Lett. 83, 18 (2003)
    [36] M. H. Du, S. B. Zhang, “Ring and axis mode switching in multielectrode strained InGaAsP multiple-quantum-well quasistadium laser diodes.”Appl. Phys. Lett. 87, 191903 (2005)
    [37] S. H. Han, F. S. Hasoon, H. A. Al-Thani, A. M. Hermann, D. H. Levi, “Effect of Cu deficiency on the optical properties and electronic structure of CuIn1-xGaxSe2.” J. Phys. Chem. Solids. 66, 1895-1898 (2005)
    [38] R. R. Singh, D. Painuly, R. K. Pandey, “Synthesis and characterization of electrochemically deposited nanocrystalline CdTe thin films.” Mater. Chem. Phys. 116, 261-268 (2009)
    [39] M. P. R. Panicker, M. Knaster, S. A. Kroger, J. Electrochem. Soc. 125, 566 (1978)
    [40] N. W. Duffy, L. M. Peter, R. L. Wang, D. W. Lane, K. D. Rogers, “Electrodeposition and characterization of CdTe films for solar cell applications.” Electrochim. Acta. 45, 3355-3365 (2000)
    [41] S. Tomic, T. S. Jones, N. M. Harrison, “Absorption charactrristics of a quantum dot array induced intermediate band: Implication for solar cell design.”Appl. Phys. Lett. 93, 263105 (2008)
    [42] W. Guter, J. Schöne, S. P. Philipps, M. Steiner, G. Siefer, A.Wekkeli, E. Welser, E. Oliva, A. W. Bett, F. Dimroth, “Crrrent-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight.” Appl. Phys. Lett. 94, 223504 (2009)
    [43] J. Wu, S. Hao, Z. Lan, J. Lin, M Huang, Y. Huang, P. Li, S. Yin, T. Sato, “An All-Solid-State Dye-Sensitized solar cell-based P\poly(N-alkyl-4-vinyl-pyridine iodide) electrolyte with efficiency of 5.64%.” J. Am. Chem. Soc. 130, 35 (2008)
    [44] R. Huang, X. Lin, W. Huang, R. Yao, Y. Yu, K. Lin, J. Wei, Z. Zhu, “Effect of hydrogen on the low-temperature growth of polycrystalline silicon film deposited by SiCl4/H2.” Thin Solid Films 513, 380-384 (2006)
    [45] G. Radnoczi, A. Robertsson, H. T. G. Hentzell, S. F. Gong, M. –A. Hasan, “Al induced crystallization of a-Si.” J. Appl. Phys. 69, 6394-6399 (1991)
    [46] S. Rivillon, F. Amy, Y. J. Chabal, “Gas phase chlorination of hydrogen-passivated silicon surfaces.” Appl. Phys. Lett. 85, 13 (2004)
    [47] O. Sneh, M. L. Wise, A. W. Ott, L. A. Okada, S. M. George, “Atomic layer growth of SiO2 on Si(100) using SiCl4 and H2O in a bunary reaction sequence.” Surf. Sci. 334, 135-152 (1995)
    [48] M. L. Hair, W. Hertl, “reactions of chlorosilanes with silica surfaces.” Jour. Phys. Chem, 73, 2372-2378 (1969)
    [49] M. L. Hair, C. P. Tripp, “Alkychlorosilane reactions at the silica surface.” Colloids Surf., A, 105, 95-103 (1995)
    [50] N. Ikram, M. Akhter, “X-ray diffraction analysis of silicon prepared from rice husk ash.” J. Mater. Sci. 23, 2379-2381 (1988)
    [51] H. Shirai, T. Saito, Y. Li, H. Matsui, “Surface chemistry and preferential crystal orientation on the H and Cl terminated silicon surface.” J. Appl. Phys. 101, 033531 (2007)
    [52] X. Lin, K. Lin, C. Huang, Y. Yu, Y. Luo, C. Yu, R. Huang, “Growth mechanism of polycrystalline silicon films from hydrogen-diluted SiCl4 at low temperature.” J. Appl. Phys. 98, 034907 (2005)
    [53] H. Shirai, Y. Fukihiro, S. Jubg, “Formation of nanocrystalline silicon dots from chlorinated materials by RF plasma-enhanced chemical vapor deposition.” Thin Solid Films 407, 12-17 (2002)
    [54] S. Jung, Y. Fujimura, T. Ito, H. Shirai, “Chemistry of the chlorine-terminated surface for low-temperature growth of crystal silicon films by RF plasma-enhanced chemical vapor deposition.” Sol. Energy Mater. Sol. Cells. 74, 421-427 (2002)
    [55] T. Nakashima, M . Kondo, A. Matsuda, “Promising window layer of thin film Si solar cell with p-i-n structure prepared by using SiH2Cl2.” Sol. Energy Mater. Sol. Cells. 74, 429-437 (2002)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE