簡易檢索 / 詳目顯示

研究生: 姜佳成
Jiang, Jia-Cheng
論文名稱: 用於有機場效電晶體和光折變裝置之聚三芳基胺合成與鑑定
Synthesis and Characterization of Poly(triarylamine)s for Organic Field-Effect Transistor and Photorefractive Devices
指導教授: 堀江正樹
Horie, Masaki
口試委員: 游進陽
Yu, Chin-Yang
周鶴修
Chou, Ho-Hsiu
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 119
中文關鍵詞: 聚三芳基胺高分子有機場效電晶體有機光折變裝置布赫瓦爾德-哈特維希反應
外文關鍵詞: Poly(triarylamine), Polymer, Organic field-effect transistor, Organic photorefractive device, Buchwald–Hartwig reaction
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 聚(三芳基胺)(PTAA)是一種在大氣環境下非常穩定的高分子,這使其具有可以透過溶液加工來製作有機電子元件的能力,像是有機場效電晶體(OFET)和有機光折變裝置(PR)等。用PTAA製成的有機電子元件的載子遷移率可以達到10-2至10-3(cm2/V×S),由於元件的製作成本低廉且製造過程簡單,因此可以輕鬆進行性能的優化。此外,PTAA是非晶性的高分子,且可以合成公克級的產物,其聚合物薄膜也具有良好的透明性,這些獨特的性能使其具有可以應用於有機PR元件的巨大的潛力。在這篇研究中,通過Buchwald-Hartwig N-C聚胺化偶聯製備了不同類型的聚三芳基胺高分子。不同分子量、稠環和側鏈密度的高分子應用於OFET的有機半導體層和PR元件中複合材料的主體聚合物。
    在第一章中,介紹了共軛聚合物的概述及其應用。並描述了有機電子材料的製備方法和發展。在第二章中,總結了單體和聚合物的合成與鑑定結果。單體通過1H-NMR和HRFD質譜儀,高分子通過1H-NMR,MALDI-TOF質譜儀和元素分析進行結構鑑定。高分子的分子量通過GPC以聚苯乙烯作為標準品測量得到。第三章歸納了聚合物的電子和光學性質,分別通過循環伏安法,UV-Vis分光光譜儀和光電子能譜儀進行分析。第四章描述了元件的性能鑑定以及優化過程,並針對這些結果整理出結論。除此之外也討論了面臨的瓶頸以及對未來研究方向的規劃及建議。最後,在第五章更詳細地描述了所有單體和高分子的合成過程和鑑定結果。


    Poly(triarylamine)s (PTAAs) have been applied in organic electronic devices, such as organic field-effect transistors (OFETs) and organic photorefractive devices (PRs), because of their advantageous properties: high stability under ambient condition, amorphous character toward low cost and simple device fabrication, sufficient hole mobility in a range of 10-3 and 10-2 (cm2 V-1 S-1), simple synthesis toward gram scale product, and high transparency film formation. These unique properties provide highly potential for applying in organic photorefractive (PR) devices. In this work, different types of PTAAs are prepared via Buchwald-Hartwig N-C polyamination coupling. Polymers with different molecular weight, fused rings and side chain density are applied in OFETs as organic semiconductor layer and in PR device as a host polymer of a complex material.
    In Chapter 1, introduction and overview of conjugated polymers and their applications are described. The preparation methods and development of organic electronic materials are also mentioned. In Chapter 2, the synthesis and characterization of monomers and polymers are summarized. The monomers are characterized by 1H-NMR and HRFD mass spectroscopy. The polymers are characterized by 1H-NMR, MALDI-TOF mass spectroscopy, and elements analysis. Molecular weight of polymers is measured by GPC with polystyrene standard. Chapter 3 shows electronic and optical properties of polymers. They are investigated by cyclic voltammetry, UV-Vis spectroscopy, and photoelectron spectroscopy. In Chapter 4, device performance characterization, optimization procedure, and conclusion are described. Recent challenge, and suggestion for future works are also discussed in this chapter. Finally, in Chapter 5, synthesis process and characterization data of all monomers and polymers are shown.

    Chapter.1 Introduction 1 1.1 Introduction of conjugated polymers 1 1.1.1 History and overview 1 1.1.2 Development of conductive polymers 2 1.2 Introduction of polymerization methods 3 1.2.1 Suzuki-Miyaura Coupling 3 1.2.2 Buchwald-Hartwig reaction 4 1.3 Applications of conjugated polymers 6 1.3.1 Organic field-effect transistors 6 1.3.2 Photorefractive device 15 1.4 Poly(triarylamine) 19 1.4.1 Introduction to PTAA 19 1.4.2 Aim of this work 21 Chapter.2 Synthesis of monomers and polymers 22 2.1 Synthesis of fluorene and carbazole based PTAAs 22 2.1.1 Introduction 22 2.1.2 Synthesis of poly[2-methyl-4-(2-ethylhexyloxy)aniline-alt-9,9-di(2-ethylhexyl)fluorene] (PTAA1) 23 2.1.3 Synthesis of poly[2-methyl-4-(methoxy)aniline-alt-9-(2-ethylhexyl)carbazole] (PTAA2) 33 2.1.4 Synthesis of poly[2-methyl-4-(2-ethylhexyloxy)aniline-alt-9-(2-ethylhexyl)carbazole] (PTAA3) 38 2.2 End-capping reaction of polymers 41 Chapter.3 Electrical and optical properties of polymers 45 3.1.1 Thin-film UV-Vis spectra 45 3.1.2 Cyclic voltammetry measurement 48 3.1.3 Photoelectron spectra 51 3.1.4 Summary 53 Chapter.4 Characterization of device performance 55 4.1 OFET device performance 55 4.1.1 Introduction 55 4.1.2 General fabrication procedure of OFET devices 55 4.1.3 OFET performance of polymers 57 4.1.4 Parameter tuning 62 4.2 Photorefractive device performance 66 4.2.1 Introduction 66 4.2.2 PR device performance 66 4.2.3 Challenge faced in PR device 72 4.3 Conclusion and future work 73 Chapter.5 Experimental section 74 5.1 Synthesis of monomers 74 5.1.1 Synthesis of 2-methyl-4-(2-ethylhexyloxy)aniline (M1) 74 5.1.2 Synthesis of 2,7-Dibromo-9,9-di-(2-ethylhexyl)fluorene (M2) 76 5.1.3 Synthesis of 2,7-Dibromo-9-(2-ethylhexyl)carbazole (M4) 77 5.2 Synthesis of poly[2-methyl-4-(2-ethylhexyloxy)aniline-alt-9,9-di(2-ethylhexyl)fluorene] (PTAA1) 78 5.2.1 Synthesis of PTAA101 78 5.2.2 Synthesis of PTAA102 79 5.2.3 Synthesis of PTAA103 80 5.2.4 Synthesis of PTAA104 81 5.2.5 Synthesis of PTAA105 82 5.2.6 Synthesis of PTAA106 83 5.3 Synthesis of poly[2-methyl-4-(methoxy)aniline-alt-9-(2-ethylhexyl)carbazole] (PTAA2) 84 5.3.1 Synthesis of PTAA201 84 5.4 Synthesis of poly[2-methyl-4-(2-ethylhexyloxy)aniline-alt-9-(2-ethylhexyl)carbazole] (PTAA3) 85 5.4.1 Synthesis of PTAA301 85 5.4.2 Synthesis of PTAA302 86 5.4.3 Synthesis of PTAA303 87 5.4.4 Synthesis of PTAA304 88 5.4.5 Synthesis of PTAA305 89 5.4.6 Synthesis of PTAA306 90 5.5 Characterization results 91 5.5.1 Characterization of monomers 91 5.5.2 Characterization of polymers 94 References 117

    1. C.K. Chiang, C. Fincher Jr, Y.W. Park, A.J. Heeger, H. Shirakawa, E.J. Louis, S.C. Gau, and A.G. MacDiarmid, Phys. Rev. Lett., 1977, 39, 1098.
    2. H. Goto. Soliton electric generators based on conducting polymers. 2014. IOP Publishing.
    3. R.R. Søndergaard, M. Hösel, and F.C. Krebs, J. Polym. Sci., 2013, 51, 16-34.
    4. S.G. Surya, H.N. Raval, R. Ahmad, P. Sonar, K.N. Salama, and V.R. Rao, Trends Anal. Chem., 2018,
    5. L. Zhang, W. Du, A. Nautiyal, Z. Liu, and X. Zhang, SCMs, 2018, 61, 303-352.
    6. A. Suzuki, ChemComm, 2005, 4759-4763.
    7. R. Martin and S.L. Buchwald, Acc. Chem. Res., 2008, 41, 1461-1473.
    8. C. Amatore, A. Jutand, and G. Le Duc, Chem.: Eur. J., 2011, 17, 2492-2503.
    9. A.J. Lennox and G.C. Lloyd-Jones, Chemical Society Reviews, 2014, 43, 412-443.
    10. B.H. Yang and S.L. Buchwald, J. Organomet. Chem., 1999, 576, 125-146.
    11. M. Kosugi, M. Kameyama, and T. Migita, Chem. Lett., 1983, 12, 927-928.
    12. J. Louie and J.F. Hartwig, Tetrahedron Lett., 1995, 36, 3609-3612.
    13. M.M. Heravi, Z. Kheilkordi, V. Zadsirjan, M. Heydari, and M. Malmir, J. Organomet. Chem., 2018, 861, 17-104.
    14. J. Sherwood, J.H. Clark, I.J. Fairlamb, and J.M. Slattery, Green Chemistry, 2019, 21, 2164-2213.
    15. T.H. Lee, The design of CMOS radio-frequency integrated circuits. 2003: Cambridge university press.
    16. B. Lojek, History of semiconductor engineering. 2007: Springer.
    17. P.K. Weimer, Proc. IEEE, 1962, 50, 1462-1469.
    18. S. P.S, Introduction to Organic Electronic Materials. 2014.
    19. Z.A. Lamport, H.F. Haneef, S. Anand, M. Waldrip, and O.D. Jurchescu, J. Appl. Phys., 2018, 124, 071101.
    20. C.-H. Kim, Y. Bonnassieux, and G. Horowitz, IEEE Trans. Electron Devices, 2013, 61, 278-287.
    21. K. Ryu, I. Kymissis, V. Bulovic, and C. Sodini, IEEE Electron Device Lett, 2005, 26, 716-718.
    22. C. Rost-Bietsch, Ambipolar and light-emitting organic field-effect transistors. 2005: Cuvillier Verlag.
    23. Y. Huang, W. Huang, J. Yang, J. Ma, M. Chen, H. Zhu, and W. Wang, Polym. Chem., 2016, 7, 538-545.
    24. G. Horowitz, R. Hajlaoui, H. Bouchriha, R. Bourguiga, and M. Hajlaoui, Adv. Mater., 1998, 10, 923-927.
    25. C.R. Newman, C.D. Frisbie, D.A. da Silva Filho, J.-L. Brédas, P.C. Ewbank, and K.R. Mann, Chem. Mater., 2004, 16, 4436-4451.
    26. B.B. Patowary, IJAREEIE, 2014, 3, 9351-9360.
    27. H. Klauk, Chem. Soc. Rev., 2010, 39, 2643-2666.
    28. M. Horie, L.A. Majewski, M.J. Fearn, C.-Y. Yu, Y. Luo, A. Song, B.R. Saunders, and M.L. Turner, J. Mater. Chem., 2010, 20, 4347-4355.
    29. Z. Bao, A. Dodabalapur, and A.J. Lovinger, Appl. Phys. Lett., 1996, 69, 4108-4110.
    30. M. Horie, J. Kettle, C.-Y. Yu, L.A. Majewski, S.-W. Chang, J. Kirkpatrick, S.M. Tuladhar, J. Nelson, B.R. Saunders, and M.L. Turner, J. Mater. Chem., 2012, 22, 381-389.
    31. M.-B. Madec, J.J. Morrison, V. Sanchez-Romaguera, M.L. Turner, and S.G. Yeates, J. Mater. Chem., 2009, 19, 6750-6755.
    32. M. Yun, A. Sharma, C. Fuentes-Hernandez, D.K. Hwang, A. Dindar, S. Singh, S. Choi, and B. Kippelen, ACS Appl. Mater. Interfaces, 2014, 6, 1616-1622.
    33. D. Gabor, Journal, 1948,
    34. A. Ashkin, C. Boyd, J.i. Dziedzic, R. Smith, A. Ballman, J. Levinstein, and K. Nassau, in Landmark Papers On Photorefractive Nonlinear Optics. 1995, World Scientific. p. 29-31.
    35. B. Lynn, P.A. Blanche, and N. Peyghambarian, J. Polym. Sci., 2014, 52, 193-231.
    36. S. Köber, M. Salvador, and K. Meerholz, Adv. Mater., 2011, 23, 4725-4763.
    37. O. Ostroverkhova, Handbook of organic materials for optical and (opto) electronic devices: properties and applications. 2013: Elsevier.
    38. S. Ducharme, J. Scott, R. Twieg, and W. Moerner, Observation of the photorefractive effect in a polymer, in Landmark Papers On Photorefractive Nonlinear Optics. 1995, World Scientific. p. 427-430.
    39. O. Ostroverkhova and W. Moerner, Chem. Rev., 2004, 104, 3267-3314.
    40. N. Tsutsumi, Polym. J., 2016, 48, 571.
    41. Y. Zhang, Y. Cui, and P.N. Prasad, Phys. Rev. B, 1992, 46, 9900.
    42. N. Tsutsumi and W. Miyazaki, J. Appl. Phys., 2009, 106, 083113.
    43. Z. Cao, Y. Abe, T. Nagahama, K. Tsuchiya, and K. Ogino, Polym. J., 2013, 54, 269-276.
    44. Y. Ko, Y. Kim, C. Lee, Y. Kim, and Y. Jun, ACS Appl. Mater. Interfaces, 2018, 10, 11633-11641.
    45. R.S. Sprick, M. Hoyos, J.J. Morrison, I.M. Grace, C. Lambert, O. Navarro, and M.L. Turner, J. Mater. Chem. C, 2013, 1, 3327-3336.
    46. A.J. Campbell, R. Rawcliffe, A. Guite, J.C.D. Faria, A. Mukherjee, M.A. McLachlan, M. Shkunov, and D.D. Bradley, Adv. Funct. Mater., 2016, 26, 3720-3729.
    47. J. Yang, Z. Zhao, S. Wang, Y. Guo, and Y. Liu, Chem, 2018, 4, 2748-2785.
    48. Z. Yu, Y. Xia, D. Du, and J. Ouyang, ACS Appl. Mater. Interfaces, 2016, 8, 11629-11638.

    QR CODE