簡易檢索 / 詳目顯示

研究生: 周承翰
Chou, Chen-Han
論文名稱: 矽光量子晶片應用於模組化量子隨機亂數產生器
Application of Silicon Photonic Quantum Chips in Modular Quantum Random Number Generators
指導教授: 李明昌
Lee, Ming-Chang
口試委員: 鄭皓中
Cheng, Hao-Chung
李依珊
Lee, Yi-Shan
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2024
畢業學年度: 113
語文別: 中文
論文頁數: 72
中文關鍵詞: 量子隨機亂數產生器零差檢測量子光子晶片連續變量密碼學
外文關鍵詞: Quantum Random Number Generator, Balanced Homodyne Detection, Quantum Photonic Chip, Continuous Variable, Cryptography
相關次數: 點閱:56下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨機亂數在眾多領域中具有廣泛的應用,從量子密鑰分發、經典密碼學到賭博遊戲及樂透等娛樂行業,隨機數都扮演著重要角色。在量子電腦發展大幅進步的情況下,便有利用物理性質生成的隨機亂數,被認為是「真正的」隨機數。
    真隨機亂數產生器 (true random number generators) 可以透過探測如硬體雜訊、系統熱雜訊和量子性質等物理現象來生成不可被預測的「真隨機亂數」。其中,利用真空態波動量子現象中的機率性質來作為隨機數來源,可以確保生成的隨機數具有高度不可預測性且有真隨機性,稱為量子隨機亂數產生器 (QRNG)。
    本研究利用平衡零差檢測 (Balance Homodyne Detection) 方法探測室溫下之真空態量子相位變異來開發出積體化QRNG,產生速率約70 Mbps,並且產生之隨機亂數通過NIST統計測試,並結合自行開發之自動平衡零差檢測系統,利用自動化控制光晶片來達到平衡零差檢測的效果,未來結合FPGA可以更容易實現高效率之多通道積體化QRNG之應用。


    Random numbers have extensive applications across various fields, from quantum key distribution and classical cryptography to gambling games and lotteries in the entertainment industry, where they play a crucial role. With the significant advancements in quantum computing, random numbers generated using physical properties are considered to be "true" random numbers.
    True Random Number Generators (TRNGs) can produce unpredictable "true" random numbers by detecting physical phenomena such as hardware noise, thermal noise in systems, and quantum properties. Among these, using the probabilistic nature of quantum fluctuations in the vacuum state as a source of randomness ensures that the generated random numbers have a high degree of unpredictability and true randomness. This method is referred to as a Quantum Random Number Generator (QRNG).
    This study leverages Balanced Homodyne Detection to measure the quantum phase variance of the vacuum state at room temperature, developing an integrated QRNG that achieves a generation rate of approximately 70 Mbps. The generated random numbers successfully pass the NIST statistical tests. Additionally, by combining a self-developed automatic balanced homodyne detection system, which utilizes automated control of the photonic chip to achieve balanced homodyne detection, future integration with FPGA technology will facilitate the implementation of highly efficient multi-channel integrated QRNGs.

    摘要---------------------------------------------I ABSTRACT-----------------------------------------II 致謝---------------------------------------------IV 目錄---------------------------------------------VII LIST OF FIGURES----------------------------------X LIST OF TABLES-----------------------------------XII 第一章 序論---------------------------------------1 第二章 研究原理-----------------------------------11 第三章 研究方法與實驗架構--------------------------37 第四章 研究結果與分析------------------------------49 第五章 LABVIEW自動平衡零差檢測系統------------------58 第六章 總結與未來工作------------------------------66 第七章 參考文獻------------------------------------71

    [1] ID Quantique, https://www.idquantique.com/random-number-generation/qrng-use-cases/docusign-esignature-use-case/
    [2] MagiQ Technologies, https://www.magiqtech.com/solutions/network-security/
    [3] QuintessenceLabs, https://www.quintessencelabs.com/news/quintessencelabs-qstream-entropy-as-a-service-eaas-solution-delivers-truly-random-numbers-for-encryption-keys
    [4] IBM, https://www.ibm.com/blog/cryptography-use-cases/
    [5] Samsung galaxy quantum 4 smartphone, https://www.idquantique.com/random-number-generation/qrng-use-cases/samsung-qrng-use-case/
    [6] C. S. Petrie and J. A. Connelly, “A noise-based IC random number generator
    for applications in cryptography,” IEEE Transactions on Circuits and Systems
    I: Fundamental Theory and Applications, vol. 47, pp. 615–621, May 2000.
    [7] J. Szczepanski, E. Wajnryb, J. Amigo, M. V. Sanchez-Vives, and M. Slater,
    “Biometric random number generators,” Computers & Security, vol. 23, no. 1,
    pp. 77 – 84, 2004.
    [8] T. Stojanovski, J. Pihl, and L. Kocarev, “Chaos-based random number generators.Part II: practical realization,” IEEE Transactions on Circuits and
    Systems I: Fundamental Theory and Applications, vol. 48, pp. 382–385, March
    2001.
    [9] “Evaluation of VIA C3 Nehemiah random number generator,” 2003. Cryptography Research Inc.
    [10] Quantum random number generators, https://doi.org/10.48550/arXiv.1604.03304
    [11] C. Gabriel, C. Wittmann, D. Sych, R. Dong, W. Mauerer, U. L. Andersen,
    C. Marquardt, and G. Leuchs, “A generator for unique quantum random numbers
    based on vacuum states,” Nature Photonics, vol. 4, pp. 711–715, oct 2010
    [12] Z. Zheng, Y. Zhang, W. Huang, and H. Guo, “6 gbps real-time optical quantum random number generator based on vacuum fluctuation,” Review of Scientific Instruments, vol. 90, 2019.
    [13] F. Raffaelli, G. Ferranti, D. H. Mahler, et al., “A homodyne detector integrated onto a photonic chip for measuring quantum states and generating random numbers,” Quantum Science and Technology, vol. 3, 2018.
    [14] B. Bai, J. Huang, G.-R. Qiao, et al., “18.8 gbps real-time quantum random number generator with a photonic integrated chip,” Applied Physics Letters, vol. 118, 2021.
    [15] P. Dong, Y.-K. Chen, G.-H. Duan, and D. T. Neilson, "Silicon photonic devices and integrated circuits," Nanophotonics, vol. 3, no. 4-5, pp. 215-228, 2014
    [16] A. Politi, M. J. Cryan, J. G., S. Yu, and J. L. O’Brien, “Silica-on-silicon
    waveguide quantum circuits,” Science, vol. 320, pp. 646–649, 2008
    [17] A. Politi, J. C. Matthews, M. G. Thompson, and J. L. O’Brien, “Integrated
    quantum photonics,” IEEE Journal of Selected Topics in Quantum Electronics,
    vol. 15, pp. 1673–1684, 2009
    [18] J. Silverstone, D. Bonneau, J. O’Brien, and M. Thompson, “Silicon quantum
    photonics,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 22,
    pp. 390 – 402, 2016
    [19] G. Lifante, “Integrated Photonics.” Wiley-Blackwell, 2003
    [20] L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices
    based on self-imaging: principles and applications,” Journal of Lightwave Technology, vol. 13, pp. 615–627, Apr 1995
    [21] I-V Curve, https://blog.mbedded.ninja/
    [22] Gilbert Grynberg, “Introduction to Quantum Optics,” Cambridge University Press, pp. 19-20
    [23] X. L. Jin, “Balanced homodyne detection with high common mode rejection ratio based on parameter compensation of two arbitrary photodiodes,” Opt. Express 23(18), 23859–23866, 2015
    [24] F. Raffaelli, “Quantum random number generators in integrated photonics,” Ph.D. dissertation, University of Bristol, 2019
    [25] Y. Shen, L. Tian, and H. Zou, “Practical quantum random number generator
    based on measuring the shot noise of vacuum states,” Physical Review A,
    vol. 81, p. 063814, Jun 2010
    [26] X. Ma, “Postprocessing for quantum random-number generators: Entropy evaluation and randomness extraction,” Physical Review A, vol. 87, 2013
    [27] T. Michel, “Real-time source-independent quantum random-number generator with squeezed state,” Physical Review Applied, vol. 12, 2019.
    [28] Bruno Sanguinetti, “Quantum random number generation on a mobile phone,” quant-ph, Rev. X 4, 031056, September 2014
    [29] G. E. Box, “Time series analysis, ” John Wiley & Sons, 2016
    [30] A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson,
    M. Vangel, D. Banks, A. Heckert, J. Dray, and S. Vo, “A statistical test suite
    for random and pseudorandom number generators for cryptographic applications,” National Institute of Technology, April 2010
    [31] P-value, https://www.simplypsychology.org/p-value.html
    [32] LabView introduction, https://www.ni.com/zh-tw/shop/labview.html
    [33] Splicer,https://simbol.ca/fusion-splicers/121-fujikura-fsm-100p-fusion splicer.html

    QR CODE