簡易檢索 / 詳目顯示

研究生: 郭柄宏
Kuo, Bing-Hong
論文名稱: 藉由改變金屬(金、銀、銅)前驅物的比例來合成具有形狀控制的金屬奈米粒子
Synthesis of Metal (Au, Ag, and Cu) Nanocrystals with Shape Evolution Achieved by Varying the Metal Precursor Amount
指導教授: 黃暄益
Huang, Hsuan-Yi
口試委員: 陳益佳
Chen, I-Chia
劉學儒
Liu, Hsueh-Ju
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 73
中文關鍵詞: 金奈米粒子前驅物形狀控制
外文關鍵詞: Nanocrystals, Shape Evolution, Metal Precursor Amount
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇研究論包含兩個部分,第一部分主要是利用植晶法並簡單的增加金前驅物的量來得不同形狀的金奈米粒子,以形狀演化的方式來分為兩類。第一類為從菱形十二面體演化至立方體,此方法利用四氯金酸當作金的前驅物,維生素C當作還原劑,加入少量的溴化鈉,並以氯化十六烷基三甲基銨鹽做為界面活性劑且控制反應速率,而形狀的演化是利用加入不同體積的四氯金酸來達成。第二類為從八面體演化至菱形十二面體,此方法與第一類方法基本上相同,只是將溴化鈉換成碘化鉀,形狀的演化也是利用加入不同體積的四氯金酸來完成。由實驗結果可知,改變金前驅物的量不只可以少量增加金奈米粒子的尺寸,同時也可以改變金奈米粒子的形狀,並且只要在其他反應條件不變下,固定四氯金酸與維他命C的莫耳比例在一定值,即可得到其值對應的形狀。另外我們也將四氯金酸與氯化十六烷基三甲基銨鹽以莫耳數( 1:1, 1:2, 1:4, 1:6, 1:8, 1:10)混合並做紫外-可見光光譜的檢測,並加入不同量的維他命C進行追蹤,進而證明了[CTA-AuCl4]與[CTA-AuCl2]兩種錯合物的存在,也得到了氯化十六烷基三甲基銨鹽不只可以當作保護劑,其身上的攜帶的氯離子也會與金屬前驅物進行離子交換,且其解離後的正離子亦會與金屬前驅物形成錯合物,其可以改變金屬前驅物的還原電位並降低反應速率。
    實驗的第二部分是由於第一部分的成功,我們想將這個結果應用在合成不同形狀的奈米銀與銅奈米粒子上。首先是奈米銀的部分,以三氟醋酸銀當作銀的前驅物,維他命C當作還原劑,氯化十六烷基三甲基銨鹽當作界面活性劑,並在60°C下持續攪拌一個小時半,並藉由改變銀前驅物的方式來試著得到不同形狀的銀奈米粒子,結果與與推測的相同,由於此反應式對應的反應商中並沒有銀前驅物濃度的存在,故改變銀前驅物加入的量只會改變形狀,不會改變形狀。另外我們將維他命C換成抗壞血酸鈉,並調控抗壞血酸鈉的量,可以得到15-23 nm極小顆銀立方體,也可從紫外-可見光光譜看到,隨著銀立方體尺寸的增加,光譜有著紅位移的現象。再來是銅的部分,以醋酸銅當作銅的前驅物,抗壞血酸鈉當作還原劑,氯化十六烷基三甲基銨鹽作為界面活性劑,在100°C下反應四十分鐘,並藉由改變銅前驅物加入的量來試著得到不同形狀的銅奈米粒子,由於銅前驅物的濃度存在於反應商中,故改變銅前驅物的量可將銅從線狀變化成立方體,並且銅加入的量越多,銅立方體的尺寸也越大。
    由上述兩部分的實驗結果可以得知,如果金屬前驅物的濃度存在於反應商中,改變前驅物的濃度可以得到不同的金屬奈米粒子形狀,並且會增加其尺寸,若金屬前驅物的濃度不存在於反應商中,改變金屬前驅物的量僅可調整尺寸,無法得到形狀變化。


    Many papers reported different ways to synthesize shape-controlled nanocrystals. But all these strategies are related, if we understand that particle shapes can be tuned by changing the redox potential of the reaction involved. And metal precursor also involved reaction quotient. But no one has tried to mainly adjust the metal source amount to tune the particle shape, because intuitively doing so should only change the particle size and/or yield. In this dissertation, we present a synthetic method for shape evolution of gold nanocrystals by varying amount of gold precursor. And we also applicate this result on synthesis of silver and copper nanocrystals.
    In chapter 2, we synthesis of gold nanocrystals with systematic shape evolution from rhombic dodecahedra to cube or octahedral to rhombic dodecahedra by fixing ascorbic acid amount or potassium iodine amount and tuning gold precursor amount. Varying gold precursor not only can affect the size of gold nanocrystals, but also can tune the shape of gold nanocrystals. We found that the value of the molar ratio of AA/HAuCl4 is 2.25 to 2.4 or 1.43 to 1.44, rhombic dodecahedral or cubic structures would be obtained. We also prove that complexes [CTA-Aul4] and [CTA-AuCl2] do exist by UV-vis spectrum, and CTAC has an influence on reaction standard potential.
    In chapter 3, different amount of silver and copper precursor are used for synthesis of silver and copper nanocrystals. As expected, adjust silver precursor amount cannot get different shape of sliver nanocrystals due to the silver precursor is not in the reaction quotient. Increasing the silver precursor amount only can increase the size of silver nanocrystals (22 to 39 nm). Copper precursor amount can obtained copper shaper from wire to cubic structures because of the copper precursor amount is in the reaction quotient. Increasing the copper precursor amount can get wire and size-tunable cube (45 to 72 nm). For silver, we change the ascorbic acid to sodium ascorbate to do reaction. Increasing the amount of sodium ascorbate, ultrasmall silver nanocube with tunable-size (15 to 23 nm) would be synthesized.

    論文摘要 I Abstract of the Dissertation III Acknowledgment V Content VI List of Figures XI List of Schemes XVI List of Tables XVIII Appendices XIX CHAPTER 1 A Survey on the Synthesis of Polyhedral Nanocrystals 1.1 Introduction 1 1.2 Different Ways for Synthesis of Shape-Controlled Nanocrystals 5 1.2.1 Synthesis of Shape-Controlled Co3O4 Nanocrystals by Different Reaction Time .5 1.2.2 Synthesis of Shape-Controlled Gold Nanocrystals by Different Solvent Ratios 6 1.2.3 Synthesis of Shape-Controlled Nanocrystals by Different Reaction Temperature 8 1.2.4 Synthesis of Shape-Controlled Nanocrystals by Varying Reductive Agent Amount 9 1.2.5 Synthesis of Shape-Controlled Nanocrystals by Varying Surfactant Concentration 11 1.2.6 Synthesis of Shape-Controlled Nanocrystals by Varying Halide Ion Amount 12 1.3 Synthesis of Various Nanocrystal Shapes from the Perspective of Nernst Equation 13 1.4 References 14 CHAPTER 2 Synthesis of Gold Nanocrystals with Tunable Shapes Achieved by Varying the Gold Precursor Amount 2.1 Introduction 16 2.2 Experiment Section 20 2.2.1 Chemicals 20 2.2.2 Preparation of Gold Seed Solution 20 2.2.3 Synthesis of Gold Nanocrystals with Shapes Varying from Rhombic Dodecahedral to Cubic Structures (Method I Using 90 µL of 0.04 M Ascorbic Acid) 20 2.2.4 Synthesis of Gold Nanocrystals with Shapes Varying from Rhombic Dodecahedral to Cubic Structures (Method II Using 150 µL of 0.04 M Ascorbic Acid) 22 2.2.5 Synthesis of Gold Nanocrystals with Shapes Varying from Octahedral to Rhombic Dodecahedral Structures (Method I Using 20 µL of 0.001 M KI) 23 2.2.6 Synthesis of Gold Nanocrystals with Shapes Varying from Octahedral to Rhombic Dodecahedral Structures (Method II Using 50 µL of 0.001 M KI) 24 2.2.7 Preparation of [CTA-AuCl4] Solution for UV-vis Spectral Analysis 25 2.2.8 Instrumentation 25 2.2.9 Results and Discussion 26 2.3 Conclusion 49 2.4 References 50 CHAPTER 3 Synthesis of Silver and Copper Nanocrystals with Tunable Shapes Achieved by Varying the Gold Precursor Amount 3.1 Introduction 58 3.2 Experiment Section 60 3.2.1 Chemicals 60 3.2.2 Preparation of Silver Seed Solution 60 3.2.3 Synthesis of Size-Tunable Silver Nanocubes 60 3.2.4 Synthesis of Size-Tunable Ultrasmall Silver Nanocubes 61 3.2.5 Synthesis of Copper Nanocrystals with Shape Varying from Wire to Size-Tunable Nanocubes 62 3.2.6 Instrumentation 62 3.2.7 Results and Discussion 61 3.3 Conclusion 73 3.4 References 73

    Chapter 1

    E. E. Foos, R. M. Stroud, A. D. Berry, A. W. Snow, J. P. Armistead, J. Am. Chem. Soc. 2000, 122, 7114.
    [2] A. K. Ganguli, S. Vaidya, T. Ahmad, Bull. Mater. Sci. 2008, 31, 415.
    [3] C.-C. Chang, H.-L. Wu, C.-H. Kuo, M. H. Huang, Chem. Mater. 2008, 20, 7570.
    [4] M. Lin, Z. Y. Fu, H. R. Tan, J. P. Y. Tan, S. C. Ng, E. Teo, Cryst. Growth Des. 2012, 12, 3296.
    [5] E.M. Elsayed, F.A. Harraz, A.E. Saba, Int. J. Nanoparticles, 2012, 5, 136.
    [6] E. M. Elsayed, M. M. Rashad, M. R. Hussein, M. M. B. E.-Sabbah, I. A. Ibrahim, RESD 2017, 3, 267.
    [7] D. H. Webber, R. L. Brutchey, Inorg. Chem. 2011, 50, 723.
    [8] K. Kamada, K. Horiguchi, T. Hyodo, Y. Shimizu, Cryst. Growth Des. 2011, 11, 1202.
    [9] M. Chen, Y. Xing, Langmuir 2005, 21, 9334.
    [10] Y. Wang, L. Zhang, J. Phys. Chem. C. 2009, 113, 9210.
    [11] H.-L. Wu, C.-H. Kuo, M. H. Huang, Langmuir 2010, 26, 12307.
    [12] P.-J. Chung, L.-M. Lyu, M. H. Huang, Chem. Eur. J. 2011, 17, 9746.
    [13] Z.-W. Lin, Y-C. Tsao, M.-Y. Yang, M. H. Huang, Chem. Eur. J. 2016, 22, 2326.
    [14] Y. Xia, Y. Xiong, B. Lim, S. E. Skrabalak, Angew. Chem. Int. Ed. 2009, 48, 60.
    [15] S. A. Canepa, B. T. Sneed, H. Sun, R. R. Unocic, K. Mølhave, J. Phys. Chem. C. 2018, 122, 2350.
    [16] A. Usher, D.C. McPhail, J. Brugger, Geochimica et Cosmochimica Acta 2009, 73, 3359.
    [17] H. Zhou, B. Lv, L. Wang, D. Wu, Y. Xu, CrystEngComm 2015, 17, 1848.
    [18] D. Y. Kim, S. H. Im, O. O. Park, Y. T. Lim, CrystEngComm 2010, 12, 116.
    [19] M. Leng, C. Yu, C. Wang, CrystEngComm 2012, 14, 8454.
    [20] W.-C. Huang, L.-M. Lyu, Y-C. Yang, M. H. Huang, J. Am. Chem. Soc. 2012, 134, 1261.
    [21] J. Zhang, C. Hou, H. Huang, L. Zhang, Z. Jiang, G. Chen, Y. Jia, Q. Kuang, Z. Xie, L. Zheng, Small 2013, 9, 538.
    [22] D. Ajloo, B. Yoonesi, A. Soleymanpour, Int. J. Electrochem. Sci. 2010, 5, 459.
    [23] M. L. Pegis, J. A. S. Roberts, D. J. Wasylenko, E. A. Mader, A. M. Appel, J. M. Mayer, Inorg. Chem. 2015, 54, 11883.
    [24] M. N. Khan, T. A. Khan, S. A. A.-Thabaiti, Z. Khan, Spectrochim. Acta A. 2015, 149, 889.

    Chapter 2

    [1] K.-H. Yang, S.-C. Hsu, M. H. Huang, Chem. Mater. 2016, 28, 5140.
    [2] H.-J. Wang, K.-H. Yang, S.-C. Hsu, M. H. Huang, Nanoscale 2016, 8, 965.
    [3] Y. Jang, N. Lee, J. H. Kim, Y. Il Park, Y. Piao, Nanomaterials 2018, 8, 252.
    [4] N. Liu, K. Li, X. Li, Y. Chang, Y. Feng, X. Sun, Y. Cheng, Z. Wu, H. Zhang, ACS Nano 2016, 10, 6062.
    [5] L. Dong, Q. Luo, K. Cheng, H. Shi, Q. Wang, W. Weng, W.-Q. Han, Sci. Rep. 2014, 4, 5084.
    [6] Y.-J. Chen, Y.-W. Chiang, M. H. Huang, ACS Appl. Mater. Interfaces 2016, 8, 19672.
    [7] M.-S. Hsieh, H.-J. Su, P.-L. Hsieh, Y.-W. Chiang, M. H. Huang, ACS Appl. Mater. Interfaces 2017, 9, 39086.
    [8] Y. Li, L. Zhang, J. C. Yu, S.-H. Yu, Prog. Nat. Sci. 2012, 22, 585.
    [9] C.-S. Tan, P.-L. Hsieh, L.-J. Chen, M. H. Huang, Angew. Chem. Int. Ed. 2017, 56, 15339.
    [10] C.-S. Tan, H.-S. Chen, C.-Y. Chiu, S.-C. Wu, L.-J. Chen, M. H. Huang, Chem. Mater. 2016, 28, 1574.
    [11] J. W. Hong, Y. Kim, Y. Kwon, S. W. Han, Chem. Eur. J. 2016, 11, 2224.
    [12] M. Jin, H. Liu, H. Zhang, Z.Xie, J. Liu, Y. Xia, Nano Res. 2011, 4, 83.
    [13] K. Chanda, S. Rej, S.‐Y. Liu, M. H. Huang, ChemCatChem 2015, 7, 1813.
    [14] J. Ouyang, J. Pei, Q. Kuang, Z. Xie, L. Zheng, ACS Appl. Mater. Interfaces 2014, 6, 12505.
    [15] R. Long, K. Mao, X. Ye, W. Yan, Y. Huang, J. Wang, Y. Fu, X. Wang, X. Wu, Y. Xie, Y. Xiong, J. Am. Chem. Soc. 2013, 135, 3200.
    [16] S. Rej, H.-J. Wang, M.-X. Huang, S.-C. Hsu, C.-S. Tan, F.-C. Lin, J.-S. Huang, M. H. Huang, Nanoscale 2015, 7, 11135.
    [17] Y.-C. Yang, H.-J. Wang, J. Whang, J.-S. Huang, L.-M. Lyu, P.-H. Lin, S. Gwo, M. H. Huang, Nanoscale 2014, 6, 4316.
    [18] J. W. Hong, S.-U. Lee, Y. W. Lee, S. W. Han, J. Am. Chem. Soc. 2012, 134, 4565.
    [19] A.-X. Yin, W.-C. Liu, J. Ke, W. Zhu, J. Gu, Y.-W. Zhang, C.-H. Yan, J. Am. Chem. Soc. 2012, 134, 20479.
    [20] M. Tsuji, R. Matsuo, P. Jiang, N. Miyamae, D. Ueyama, M. Nishio, S. Hikino, H. Kumagae, K. S. N. Kamarudin, X.-L. Tang, Cryst. Growth Des. 2008, 8, 2528.
    [21] C.-F. Hsia, M. Madasu, M. H. Huang, Chem. Mater. 2016, 28, 3073
    [22] J. Gong, G. Li, Z. Tang, Nano Today 2012, 7, 564.
    [23] D. Vanmaekelbergh, Nano Today 2011, 6, 419.
    [24] F. Lu, Y. Zhang, S. Liu, D. Lu, D. Su, M. Liu, Y. Zhang, P. Liu, J. X. Wang, R. R. Adzic, O. Gang, J. Am. Chem. Soc. 2017, 139, 7310.
    [25] W. Niu, S. Zheng, D. Wang, X. Liu, H. Li, S. Han, J. Chen, Z. Tang, G. Xu, J. Am. Chem. Soc. 2009, 131, 697.
    [26] D. Y. Kim, S. H. Im, O. O. Park, Y. T. Lim, CrystEngComm 2010, 12, 116.
    [27] W. Niu, Y. Duan, Z. Qing, H. Huang, X. Lu, J. Am. Chem. Soc. 2017, 139, 5817.
    [28] H.-L. Wu, C.-H. Kuo, M. H. Huang, Langmuir 2010, 26, 12307.
    [29] P.-J. Chung, L.-M. Lyu, M. H. Huang, Chem. Eur. J. 2011, 17, 9746.
    [30] X. Ji, X. Song, J. Li, Y. Bai, W. Yang, X. Peng, J. Am. Chem. Soc. 2007, 129, 13939.
    [31] M. N. Khan, T. A. Khan, S. A. A.-Thabaiti, Z. Khan, Spectrochim. Acta A. 2015, 149, 889.
    [32] S. A. Canepa, B. T. Sneed, H. Sun, R. R. Unocic, K. Mølhave, J. Phys. Chem. C 2018, 122, 2350.
    [33] Y. Song, T. Miao, P. Zhang, C. Bi, H. Xia, D. Wang, X. Tao, Nanoscale 2015, 7, 8405.
    [34] Z. Zhang, Z. Wang, H. Zhang, C. Wang, Y. Yin, M. Jin, Nanoscale 2014, 6, 3518.
    [35] C. Chiang, M. H. Huang, Small 2015, 11, 6018.
    [36] M. R. Langille, M. L. Personick, J. Zhang, C. A. Mirkin, J. Am. Chem. Soc. 2012, 134, 14542.
    [37] D. K. Smith, N. R. Miller, B. A. Korgel, Langmuir 2009, 25, 9518.
    [38] A. Usher, D. C. McPhail, J. Brugger,Geochim. Cosmochim. Acta 2009, 73, 3359.
    [39] Y. Holade, D. P. Hickeya, S. D. Minteer, J. Mater. Chem. A. 2016, 4, 17154.
    [40] X. Liang, Z.-J. Wang, C.-J. Liu, Nanoscale Res Lett. 2010, 5, 124.

    Chapter 3

    [1] Z.-W. Lin, Y.-C. Tsao, M.-Y. Yang, M. H. Huang, Chem. Eur. J. 2016, 22, 2326.
    [2] S. Thoka, M. Madasu, C-F Hsia, S-Y Liu, M. H. Huang, Chem. Asian J. 2017, 12, 2318.

    QR CODE