簡易檢索 / 詳目顯示

研究生: 李祖霆
Lee, Tzu-Ting
論文名稱: 濕式珠磨法在Bi-Sb-Te熱電材料製備之應用研究
Characterization of Bi-Sb-Te powders prepared by wet bead milling
指導教授: 廖建能
Liao, Chien-Neng
口試委員: 徐文光
Hsu, Wen-Kuang
朱旭山
Chu, Hsu Shen
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 64
中文關鍵詞: 濕式珠磨熱電材料塊材奈米粉末冷壓
外文關鍵詞: wet bead milling, thermoelectric, bulk material, nanopowder, cold pressed
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 熱電材料一直以來被視為具有潛力的能源轉換材料之一,此材料可將電能及熱能進行直接轉換。其便利性及穩定性為熱電材料應用重點。近年研究發現奈米結構熱電材料具備優良的熱電性質。而碲化鉍為室溫下應用範圍最廣之熱電材料,因此本研究嘗試利用濕式珠磨製程製作Bi-Sb-Te化合物奈米粉末並壓錠塊材,探討其熱電傳輸性質。
    本實驗Bi-Sb-Te奈米結構塊材製備方式為先利用行星式球磨法將Bi-Sb-Te合金鑄錠初磨至微米等級以下,再以(JBM-B035)珠磨機成功粉碎至奈米粒徑,再以冷壓法壓錠試片,並對此試片作分析了解。此研究重心為珠磨法對於熱電材料的影響及其可行性。研究結果顯示,濕式珠磨法能夠對Bi-Sb-Te合金粉末施以高能量衝擊,使粉末粒徑縮小至奈米等級,但亦導致粉末結晶結構劇烈破壞同時使奈米合金粉末氧化。微結構觀察顯示氧化非晶態層結構,散佈在Bi-Sb-Te粉末中。Bi-Sb-Te材料氧化以及其晶體結構破壞影響冶金性質,使試片不易壓錠成形。因此添加氫還原製程,目的是將合金材料氧化部分去除並恢復材料冶金性質。此製程可使粉體還原並再生長形成Bi-Sb-Te合金粉末,結果顯示粉末粒徑大小快速增長,晶體傾向片狀結構的生長,使材料粉體再生長時具有(00l)晶面優選方向。晶體的成長與基面優取方向導致電導性質與熱導性質的增強,進而改變材料熱電性質。


    Thermoelectric material which converts electrical energy into thermal energy directly, and vice versa, has been regarded as a potential energy conversion material. Recent studies have found nanostructured thermoelectric materials can create better thermoelectric properties and lead to better thermoelectric conversion efficiency. In this study, Bi-Sb-Te compounds nano-powders were prepared by wet bead milling process and pressed into a sample. The effects of processing conditions on thermoelectric properties of cold-pressed Bi-Sb-Te are investigated.
    In this study, Bi-Sb-Te powders of micro-meter size were first prepared by a planetary ball milling, and then refined into nano-size particles by wet beads milling method. Finally, these powders were pressed into a bulk at room temperature. We found some problems occurring during the wet-milling process. Bi-Sb-Te alloy powders prepared by wet bead milling are subjected to serious damage of crystal structure and oxidation. The oxidation affects the metallurgical properties of the Bi-Sb-Te material and crystal structure, results in specimen's compactness. Here, we added an additional hydrogen reduction process to recover the ground B-Sb-Te powders by removing the oxidized part and restoring the thermoelectric properties of the pressed Bi-Sb-Te compound. The results show that the Bi-Sb-Te powders have a (00l) preferred orientation and the Bi2Te3 crystal reveals laminar structure. The pressed Bi-Sb-Te with (00l) preferred orientation has enhanced electricity conductivity and thermal conductivity as well as thermoelectric figure-of-merit.

    致謝 I 摘要 II Abstract III 目錄 IV 圖目錄 VII 表目錄 X 第一章、緒論 1 1.1. 熱電效應 2 1.1.1. Seebeck效應 2 1.1.2. Peltier效應 3 1.1.3. Thomson效應 4 1.2. 熱電轉換效率 4 1.2.1. 發電器 4 1.2.2. 製冷器 5 1.2.3. 熱電材料效率 6 1.3.熱電材料傳輸理論 8 1.4.研究動機 10 第二章、文獻回顧 12 2.1  Bi2Te3 合金 12 2.1.1.  Bi2Te3晶體結構 12 2.1.2.  Bi2Te3傳輸性質 14 2.1.3.  Bi2Te3晶格缺陷 14 2.2. 熱電材料性質改善 15 2.2.1.  熱導性質的改善 16 2.3.  Bi2Te3奈米塊材製備 17 2.3.1.  Bi2Te3塊材製備方法 17 2.4. 研究動機 20 第三章、實驗設計 23 3.1. 實驗流程 23 3.2. 實驗步驟 23 3.2.1. 製備Bi-Sb-Te合金粉末 23 3.2.2. 使用濕式珠磨法(JBM-B035)研磨Bi-Sb-Te合金粉末 25 3.2.3. 氫還原製程 25 3.2.4. 壓錠製程 26 3.3.  性質量測與分析 26 3.3.1. 電性量測 26 3.3.1.1. 霍爾效應量測 26 3.3.1.2. Seebeck係數 量測 27 3.3.2.  熱導性質量測 28 3.3.2.1. 熱擴散性質量測 28 3.3.2.2. 熱容量量測 29 3.3.2.3. 密度量測 29 3.3.3.  微結構與成分分析 30 第四章、結果與討論 32 4.1 Bi0.5Sb1.5Te3 +4wt%Te合金粉末與濕磨粉末的表面形貌與粒徑分佈比較 32 4.2 合金粉末經濕式珠磨微結構分析 35 4.3氫還原製程的微結構分析 37 4.3.1氫還原製程氫氣氣氛對濕磨粉末的微結構影響 .37 4.3.2氫還原製程熱效應導致濕磨粉末晶面優選方向改變 40 4.3.3 (00l)晶面優選方向分析顯示濕磨粉末微結構 45 4.3.4氫還原溼式球磨粉體晶體生長機制-片狀結構 50 4.4濕磨粉末經氫還原與壓錠處理後之熱電傳輸性質比較 52 第五章、結論 59 參考文獻 60

    [1] Y. Daniel (1991). “The prize: the epic quest for oil, money, and power.” Simon & Schuster, New York city p.634.
    [2] D. M. Rowe (2006). “Thermoelectrics handbook: macro to nano.” CRC/Taylor & Francis, Boca Raton p.1-55.
    [3] E. A. Skrabek, J. W. McGrew (1988). “Pioneer 10 and 11 RTG performance update.” in Space Nuclear Power Systems 1987, 7,Orbit Book Co., Malabar, Florida p.587.
    [4] D. M. Rowe (1995). “CRC handbook of thermoelectric.” CRC Press, Boca Raton p.19–25.
    [5] F. J. DiSalvo (1999). “Thermoelectric cooling and power generation.” Science 285(5428): 703-706.
    [6] A. J. Minnich, M. S. Dresselhaus, et al. (2009). “Bulk nanostructured thermoelectric materials: current research and future prospects.” Energy & Environmental Science 2(5): 466-479.
    [7] T. E. Whall, E. H. C. Parker (2000). “Si/SiGe/Si pMOS Performance - alloy scattering and other considerations.” Thin Solid Films 369(1–2): 297-305.
    [8] G.S. Nolas, J. Sharp, et al. (1962). "Thermoelectrics: basic principles and new materials developments.” Springer series in materials science v.45, Berlin Heidelberg, New York p.18-39
    [9] G. J. Snyder, E. S. Toberer (2008). “Complex thermoelectric materials.” Nat. Mater. 7(2): 105-114.
    [10] M. S. Dresselhaus, G. Chen, et al. (2007). “New directions for low-dimensional thermoelectric materials.” Advanced Materials 19(8): 1043-1053.
    [11] B. Poudel, Q. Hao, et al. (2008). “High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys.” Science 320(5876): 634-638.
    [12] M. Inkyo, T. Tahara, et al. (2006). “Experimental investigation of nanoparticle dispersion by beads milling with centrifugal bead separation.” Journal of Colloid and Interface Science 304(2): 535-540.
    [13] G. Wang, T. Cagin (2007). “Electronic structure of the thermoelectric materials Bi2Te3 and Sb2Te3 from first-principles calculations.” Physical Review B 76(7): 075201.
    [14] D. M. Rowe (2006). “Thermoelectric handbook: macro to nano.” CRC/Taylor & Francis, Boca Raton chap. 9.4.
    [15] T. Caillat, M. Carle, et al. (1992). “Thermoelectric properties of BixSb(1−x)2Te3 single crystal solid solutions grown by the T.H.M. method.” Journal of Physics and Chemistry of Solids 53(8): 1121-1129.
    [16] X. A. Fan, J. Y. Yang, et al. (2006). “Characterization and thermoelectric properties of p-type 25%Bi2Te3 –75%Sb2Te3 prepared via mechanical alloying and plasma activated sintering.” Journal of Physics D: Applied Physics 39(4): 740.
    [17] G. R. Miller, C. Y. Li (1965). “Evidence for the existence of antistructure defects in bismuth telluride by density measurements.” Journal of Physics and Chemistry of Solids 26(1): 173-177.
    [18] Z. Starý, J. Horák, et al. (1988). “Antisite defects in Sb2−xBixTe3 mixed crystals.” Journal of Physics and Chemistry of Solids 49(1): 29-34.
    [19] H. W. Jeon, H. P. Ha, et al. (1991). “Electrical and thermoelectrical properties of undoped Bi2Te3-Sb2Te3 and Bi2Te3-Sb2Te3-Sb2Se3 single crystals.” Journal of Physics and Chemistry of Solids 52(4): 579-585.
    [20] B. Du, H. Li, et al. (2011). “Enhanced thermoelectric performance and novel nanopores in AgSbTe2 prepared by melt spinning.” Journal of Solid State Chemistry 184(1): 109-114.
    [21] C. J. Liu, H. C. Lai, et al. (2012). “High thermoelectric figure-of-merit in p-type nanostructured (Bi,Sb)2Te3 fabricated via hydrothermal synthesis and evacuated and encapsulated sintering.” Journal of Materials Chemistry 22(11): 4825-4831.
    [22] T. Aizawa, T. Kuji, et al. (1999). “Synthesis of Mg2Ni alloy by bulk mechanical alloying.” Journal of Alloys and Compounds 291(1–2): 248-253.
    [23] F. Müller, W. Peukert, et al. (2004). “Dispersing nanoparticles in liquids.” International Journal of Mineral Processing 74, Supplement(0): S31-S41.
    [24] S. Mende, F. Stenger, et al. (2003). “Mechanical production and stabilization of submicron particles in stirred media mills.” Powder Technology 132(1): 64-73.
    [25] J. Adam, R. Drumm, et al. (2008). “Milling of zirconia nanoparticles in a stirred media mill.” Journal of the American Ceramic Society 91(9): 2836-2843.
    [26] Y. Wang, E. Forssberg (2006). “Production of carbonate and silica nano-particles in stirred bead milling.” International Journal of Mineral Processing 81(1): 1-14.
    [27] K. Schönert, S. Bernotat (1988). “Size reduction (fundamentals).” Ullmann's Encyclopedia of Industrial Chemistry(VCH-Verlagsgesellschaft mbH) vol. B2, pp 5.1–5.14.
    [28] T. Wakihara, R. Ichikawa, et al. (2011). “Bead-milling and postmilling recrystallization: an organic template-free methodology for the production of nano-zeolites.” Crystal Growth & Design 11(4): 955-958.
    [29] H. T. Zhang, et al. (2004). “Characterization of nanocrystalline bismuth telluride (Bi2Te3) synthesized by a hydrothermal method.” Journal of Crystal Growth 265(3–4): 558-562.
    [30] S. Schaer, G. Arnosti,et al(2005).“ Converting of nanoparticles in industrial product formulations: unfolding the innovation potential.” Technical Proceedings of the 2005 NSTI Nanotechnology Conference and Trade Show, Volume 2 (NSTI Nanotech: Technical Proceedings) vol.2.
    [31] W. J. Parker, R. J. Jenkins, et al. (1961). “Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity.” Journal of Applied Physics 32(9): 1679-1684.
    [32]http://www.horiba.com/cn/scientific/products/elemental-analyzers/weeerohselv/details-xgt-10001700wr/emga-620w-oxygen-nitrogen-combustion-analyzer-514/ HORIBA集团•科學儀器事業部, EMGA-620W-氧/氮分析儀
    [33] 邱建豪(2011) “Bi-Sb-Te熱電材料之擴散特性研究”, 國立清華大學碩士論文
    [34] 林幸嫺(2011) “電流效應對Bi-Se-Te奈米結構塊材熱電材質之研究” 國立清華大學碩士論文
    [35] R. T. Sanderson (1983). “Electronegativity and bond energy.” Journal of the American Chemical Society 105(8): 2259-2261.
    [36] C. H. Lim, D. C. Cho, et al. (2005). “Effects of hydrogen reduction on the thermoelectric properties of spark-plasma-sintered Bi2Te3-based compounds.” Journal of the Korean Physical Society 46(4):995-1000
    [37] P. Hartman (1973). “Crystal growth: an introduction, ed. P. Hartman.” American Elsevier, North-Holland P.376 .
    [38] X. A. Fan, J. Y. Yang, et al. (2006). “Characterization and thermoelectric properties of p-type 25%Bi2Te3 –75%Sb2Te3 prepared via mechanical alloying and plasma activated sintering.” Journal of Physics D: Applied Physics 39(4): 740.
    [39] J. Jiang, L. Chen, et al. (2005). “Thermoelectric performance of p-type Bi–Sb–Te materials prepared by spark plasma sintering.” Journal of Alloys and Compounds 390(1–2): 208-211.
    [40] S. S. Kim, S. Yamamoto, et al. (2004). “Thermoelectric properties of anisotropy-controlled p-type Bi–Te–Sb system via bulk mechanical alloying and shear extrusion.” Journal of Alloys and Compounds 375(1–2): 107-113.
    [41] G. Zhang, W. Wang, et al. (2008). "Solvothermal synthesis of V−VI binary and ternary hexagonal platelets: the oriented attachment mechanism." Crystal Growth & Design 9(1): 145-150.
    [42] W. Lu, Y. Ding, et al. (2005). "Bismuth telluride hexagonal nanoplatelets and their two-step epitaxial growth." Journal of the American Chemical Society 127(28): 10112-10116.
    [43] 施孝東(2009) “電鍍碲化鉍之片狀結構成長機制研究” 國立清華大學碩士論文
    [44] G.S. Nolas, J. Sharp, et al. (1962). "Thermoelectrics: basic principles and new materials developments.” Springer series in materials science v.45, Berlin Heidelberg, New York p.34-42

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE