研究生: |
李祖霆 Lee, Tzu-Ting |
---|---|
論文名稱: |
濕式珠磨法在Bi-Sb-Te熱電材料製備之應用研究 Characterization of Bi-Sb-Te powders prepared by wet bead milling |
指導教授: |
廖建能
Liao, Chien-Neng |
口試委員: |
徐文光
Hsu, Wen-Kuang 朱旭山 Chu, Hsu Shen |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 64 |
中文關鍵詞: | 濕式珠磨 、熱電材料 、塊材 、奈米粉末 、冷壓 |
外文關鍵詞: | wet bead milling, thermoelectric, bulk material, nanopowder, cold pressed |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
熱電材料一直以來被視為具有潛力的能源轉換材料之一,此材料可將電能及熱能進行直接轉換。其便利性及穩定性為熱電材料應用重點。近年研究發現奈米結構熱電材料具備優良的熱電性質。而碲化鉍為室溫下應用範圍最廣之熱電材料,因此本研究嘗試利用濕式珠磨製程製作Bi-Sb-Te化合物奈米粉末並壓錠塊材,探討其熱電傳輸性質。
本實驗Bi-Sb-Te奈米結構塊材製備方式為先利用行星式球磨法將Bi-Sb-Te合金鑄錠初磨至微米等級以下,再以(JBM-B035)珠磨機成功粉碎至奈米粒徑,再以冷壓法壓錠試片,並對此試片作分析了解。此研究重心為珠磨法對於熱電材料的影響及其可行性。研究結果顯示,濕式珠磨法能夠對Bi-Sb-Te合金粉末施以高能量衝擊,使粉末粒徑縮小至奈米等級,但亦導致粉末結晶結構劇烈破壞同時使奈米合金粉末氧化。微結構觀察顯示氧化非晶態層結構,散佈在Bi-Sb-Te粉末中。Bi-Sb-Te材料氧化以及其晶體結構破壞影響冶金性質,使試片不易壓錠成形。因此添加氫還原製程,目的是將合金材料氧化部分去除並恢復材料冶金性質。此製程可使粉體還原並再生長形成Bi-Sb-Te合金粉末,結果顯示粉末粒徑大小快速增長,晶體傾向片狀結構的生長,使材料粉體再生長時具有(00l)晶面優選方向。晶體的成長與基面優取方向導致電導性質與熱導性質的增強,進而改變材料熱電性質。
Thermoelectric material which converts electrical energy into thermal energy directly, and vice versa, has been regarded as a potential energy conversion material. Recent studies have found nanostructured thermoelectric materials can create better thermoelectric properties and lead to better thermoelectric conversion efficiency. In this study, Bi-Sb-Te compounds nano-powders were prepared by wet bead milling process and pressed into a sample. The effects of processing conditions on thermoelectric properties of cold-pressed Bi-Sb-Te are investigated.
In this study, Bi-Sb-Te powders of micro-meter size were first prepared by a planetary ball milling, and then refined into nano-size particles by wet beads milling method. Finally, these powders were pressed into a bulk at room temperature. We found some problems occurring during the wet-milling process. Bi-Sb-Te alloy powders prepared by wet bead milling are subjected to serious damage of crystal structure and oxidation. The oxidation affects the metallurgical properties of the Bi-Sb-Te material and crystal structure, results in specimen's compactness. Here, we added an additional hydrogen reduction process to recover the ground B-Sb-Te powders by removing the oxidized part and restoring the thermoelectric properties of the pressed Bi-Sb-Te compound. The results show that the Bi-Sb-Te powders have a (00l) preferred orientation and the Bi2Te3 crystal reveals laminar structure. The pressed Bi-Sb-Te with (00l) preferred orientation has enhanced electricity conductivity and thermal conductivity as well as thermoelectric figure-of-merit.
[1] Y. Daniel (1991). “The prize: the epic quest for oil, money, and power.” Simon & Schuster, New York city p.634.
[2] D. M. Rowe (2006). “Thermoelectrics handbook: macro to nano.” CRC/Taylor & Francis, Boca Raton p.1-55.
[3] E. A. Skrabek, J. W. McGrew (1988). “Pioneer 10 and 11 RTG performance update.” in Space Nuclear Power Systems 1987, 7,Orbit Book Co., Malabar, Florida p.587.
[4] D. M. Rowe (1995). “CRC handbook of thermoelectric.” CRC Press, Boca Raton p.19–25.
[5] F. J. DiSalvo (1999). “Thermoelectric cooling and power generation.” Science 285(5428): 703-706.
[6] A. J. Minnich, M. S. Dresselhaus, et al. (2009). “Bulk nanostructured thermoelectric materials: current research and future prospects.” Energy & Environmental Science 2(5): 466-479.
[7] T. E. Whall, E. H. C. Parker (2000). “Si/SiGe/Si pMOS Performance - alloy scattering and other considerations.” Thin Solid Films 369(1–2): 297-305.
[8] G.S. Nolas, J. Sharp, et al. (1962). "Thermoelectrics: basic principles and new materials developments.” Springer series in materials science v.45, Berlin Heidelberg, New York p.18-39
[9] G. J. Snyder, E. S. Toberer (2008). “Complex thermoelectric materials.” Nat. Mater. 7(2): 105-114.
[10] M. S. Dresselhaus, G. Chen, et al. (2007). “New directions for low-dimensional thermoelectric materials.” Advanced Materials 19(8): 1043-1053.
[11] B. Poudel, Q. Hao, et al. (2008). “High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys.” Science 320(5876): 634-638.
[12] M. Inkyo, T. Tahara, et al. (2006). “Experimental investigation of nanoparticle dispersion by beads milling with centrifugal bead separation.” Journal of Colloid and Interface Science 304(2): 535-540.
[13] G. Wang, T. Cagin (2007). “Electronic structure of the thermoelectric materials Bi2Te3 and Sb2Te3 from first-principles calculations.” Physical Review B 76(7): 075201.
[14] D. M. Rowe (2006). “Thermoelectric handbook: macro to nano.” CRC/Taylor & Francis, Boca Raton chap. 9.4.
[15] T. Caillat, M. Carle, et al. (1992). “Thermoelectric properties of BixSb(1−x)2Te3 single crystal solid solutions grown by the T.H.M. method.” Journal of Physics and Chemistry of Solids 53(8): 1121-1129.
[16] X. A. Fan, J. Y. Yang, et al. (2006). “Characterization and thermoelectric properties of p-type 25%Bi2Te3 –75%Sb2Te3 prepared via mechanical alloying and plasma activated sintering.” Journal of Physics D: Applied Physics 39(4): 740.
[17] G. R. Miller, C. Y. Li (1965). “Evidence for the existence of antistructure defects in bismuth telluride by density measurements.” Journal of Physics and Chemistry of Solids 26(1): 173-177.
[18] Z. Starý, J. Horák, et al. (1988). “Antisite defects in Sb2−xBixTe3 mixed crystals.” Journal of Physics and Chemistry of Solids 49(1): 29-34.
[19] H. W. Jeon, H. P. Ha, et al. (1991). “Electrical and thermoelectrical properties of undoped Bi2Te3-Sb2Te3 and Bi2Te3-Sb2Te3-Sb2Se3 single crystals.” Journal of Physics and Chemistry of Solids 52(4): 579-585.
[20] B. Du, H. Li, et al. (2011). “Enhanced thermoelectric performance and novel nanopores in AgSbTe2 prepared by melt spinning.” Journal of Solid State Chemistry 184(1): 109-114.
[21] C. J. Liu, H. C. Lai, et al. (2012). “High thermoelectric figure-of-merit in p-type nanostructured (Bi,Sb)2Te3 fabricated via hydrothermal synthesis and evacuated and encapsulated sintering.” Journal of Materials Chemistry 22(11): 4825-4831.
[22] T. Aizawa, T. Kuji, et al. (1999). “Synthesis of Mg2Ni alloy by bulk mechanical alloying.” Journal of Alloys and Compounds 291(1–2): 248-253.
[23] F. Müller, W. Peukert, et al. (2004). “Dispersing nanoparticles in liquids.” International Journal of Mineral Processing 74, Supplement(0): S31-S41.
[24] S. Mende, F. Stenger, et al. (2003). “Mechanical production and stabilization of submicron particles in stirred media mills.” Powder Technology 132(1): 64-73.
[25] J. Adam, R. Drumm, et al. (2008). “Milling of zirconia nanoparticles in a stirred media mill.” Journal of the American Ceramic Society 91(9): 2836-2843.
[26] Y. Wang, E. Forssberg (2006). “Production of carbonate and silica nano-particles in stirred bead milling.” International Journal of Mineral Processing 81(1): 1-14.
[27] K. Schönert, S. Bernotat (1988). “Size reduction (fundamentals).” Ullmann's Encyclopedia of Industrial Chemistry(VCH-Verlagsgesellschaft mbH) vol. B2, pp 5.1–5.14.
[28] T. Wakihara, R. Ichikawa, et al. (2011). “Bead-milling and postmilling recrystallization: an organic template-free methodology for the production of nano-zeolites.” Crystal Growth & Design 11(4): 955-958.
[29] H. T. Zhang, et al. (2004). “Characterization of nanocrystalline bismuth telluride (Bi2Te3) synthesized by a hydrothermal method.” Journal of Crystal Growth 265(3–4): 558-562.
[30] S. Schaer, G. Arnosti,et al(2005).“ Converting of nanoparticles in industrial product formulations: unfolding the innovation potential.” Technical Proceedings of the 2005 NSTI Nanotechnology Conference and Trade Show, Volume 2 (NSTI Nanotech: Technical Proceedings) vol.2.
[31] W. J. Parker, R. J. Jenkins, et al. (1961). “Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity.” Journal of Applied Physics 32(9): 1679-1684.
[32]http://www.horiba.com/cn/scientific/products/elemental-analyzers/weeerohselv/details-xgt-10001700wr/emga-620w-oxygen-nitrogen-combustion-analyzer-514/ HORIBA集团•科學儀器事業部, EMGA-620W-氧/氮分析儀
[33] 邱建豪(2011) “Bi-Sb-Te熱電材料之擴散特性研究”, 國立清華大學碩士論文
[34] 林幸嫺(2011) “電流效應對Bi-Se-Te奈米結構塊材熱電材質之研究” 國立清華大學碩士論文
[35] R. T. Sanderson (1983). “Electronegativity and bond energy.” Journal of the American Chemical Society 105(8): 2259-2261.
[36] C. H. Lim, D. C. Cho, et al. (2005). “Effects of hydrogen reduction on the thermoelectric properties of spark-plasma-sintered Bi2Te3-based compounds.” Journal of the Korean Physical Society 46(4):995-1000
[37] P. Hartman (1973). “Crystal growth: an introduction, ed. P. Hartman.” American Elsevier, North-Holland P.376 .
[38] X. A. Fan, J. Y. Yang, et al. (2006). “Characterization and thermoelectric properties of p-type 25%Bi2Te3 –75%Sb2Te3 prepared via mechanical alloying and plasma activated sintering.” Journal of Physics D: Applied Physics 39(4): 740.
[39] J. Jiang, L. Chen, et al. (2005). “Thermoelectric performance of p-type Bi–Sb–Te materials prepared by spark plasma sintering.” Journal of Alloys and Compounds 390(1–2): 208-211.
[40] S. S. Kim, S. Yamamoto, et al. (2004). “Thermoelectric properties of anisotropy-controlled p-type Bi–Te–Sb system via bulk mechanical alloying and shear extrusion.” Journal of Alloys and Compounds 375(1–2): 107-113.
[41] G. Zhang, W. Wang, et al. (2008). "Solvothermal synthesis of V−VI binary and ternary hexagonal platelets: the oriented attachment mechanism." Crystal Growth & Design 9(1): 145-150.
[42] W. Lu, Y. Ding, et al. (2005). "Bismuth telluride hexagonal nanoplatelets and their two-step epitaxial growth." Journal of the American Chemical Society 127(28): 10112-10116.
[43] 施孝東(2009) “電鍍碲化鉍之片狀結構成長機制研究” 國立清華大學碩士論文
[44] G.S. Nolas, J. Sharp, et al. (1962). "Thermoelectrics: basic principles and new materials developments.” Springer series in materials science v.45, Berlin Heidelberg, New York p.34-42