簡易檢索 / 詳目顯示

研究生: 黃競儀
Huang, Ching-Yi
論文名稱: 研究氣相鍺擴散於砷化鎵/砷化鋁鎵與其應用於量子井混合技術
A Study of Vapor-phase Ge Diffusion in GaAs/AlxGa1-xAs and its Applications for Quantum Well Intermixing
指導教授: 謝光前
Hsieh, Kuang-Chien
口試委員: 吳孟奇
Wu, Mon-Chi
何充隆
Ho, Chung-Lung
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2015
畢業學年度: 104
語文別: 中文
論文頁數: 107
中文關鍵詞: 量子井混合砷化鎵砷化鋁鎵
外文關鍵詞: Ge, quantum well intermixing, GaAs, AlGaAs
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗主要探討鍺在砷化鎵/砷化鋁鎵中的擴散,並應用於進行量子井混合。首先利用封管技術製作出擴散源,使砷化鍺與砷化鎵基板表面反應生成鍺-鎵-砷的三元化合物。接著將此擴散源用於進行鍺擴散的實驗,一樣使用封管技術並添加額外的砷,在810℃下進行擴散2.5小時,於p型砷化鎵基板可達擴散深度1μm;而在810℃下退火25小時可使808nm雷射磊晶片有量子井混合的效果。若使用光激發螢光量測擴散後試片的光譜,可發現鍺是以Ge_Ga-V_Ga複合體的型式在砷化鎵中擴散,且以霍爾量測法與電化學電容電壓量測,可知鍺擴散進砷化鎵/砷化鋁鎵為n型摻雜。


    The main of this thesis is the method and the characteristics of Ge diffusion in GaAs/AlxGa1-xAs, and furthermore, its applications for quantum well intermixing. First, the diffusion source is made by annealing GeAs (99.999%) powder along with GaAs substrates in quartz ampoules, which may produce Ge-Ga-As ternary compounds on the surface of GaAs substrates. Then, the diffusion source is used to perform the experiment of Ge diffusion in GaAs/AlxGa1-xAs samples from vapor phase by ampoule sealing. Besides, the excess As is also added into the ampoule to make sure that the ampoule is under the ambience of As overpressure. After annealing 2.5 hours at 810℃, the diffusion depth in p-GaAs is generally 1μm, while after 25 hours, quantum well intermixing can take place in 808nm laser structures. Ge diffusion in GaAs/AlxGa1-xAs is characterized by using photoluminescence(PL), which verifying the form of Ge diffusion in GaAs substrates is Ge_Ga-V_Ga complex, Hall measurement and electrochemical capacitor-voltage(ECV),which reconfirming Ge diffusion in GaAs/AlxGa1-xAs is n-type.

    中文摘要 ..............................................................................................i Abstract .............................................................................................ii 致謝 ............................................................................................iii 目錄 ............................................................................................iv 表目錄 ...........................................................................................vii 圖目錄 ..........................................................................................viii 第1章 序論 1 1-1 半導體雷射 1 1-2 背脊式波導(Ridge-waveguide) 2 1-3 平面式波導(Planar-waveguide) 3 1-4 動機 3 第2章 原理與發展 6 2-1 擴散機制 6 2-1-1 三族原子在三-五族晶格中的自擴散(Self-diffusion) 6 2-1-2 砷蒸氣壓(As Vapor Pressure) 7 2-1-3 費米能階效應(Fermi-level Effect) 11 2-2 雜質致失序(Impurity-induced layer disordering) 14 2-2-1 間隙(Interstitial)與取代(Substitutional) 14 2-2-2 鋅(Zn)擴散 15 2-2-3 矽(Si)擴散 21 2-2-4 鍺(Ge)擴散 25 第3章 實驗設計與流程 28 3-1 實驗設計 28 3-1-1 實驗架構與步驟 28 3-1-2 實驗流程 30 3-1-3 封管技術 31 3-1-4 試片之磊晶結構 32 3-2 製備砷化鍺(GeAs, GeAs2) 35 3-2-1 砷化鍺(GeAs) 35 3-2-2 砷化鍺(GeAs2) 40 3-3 製備擴散源 41 3-4 沉積與圖案化試片之擴散阻擋層 44 3-5 鍺擴散 46 3-6 量測與分析設備 47 3-6-1 X-射線繞射分析(X-ray Diffraction, XRD) 47 3-6-2 霍爾量測(Hall measurement) 48 3-6-3 電化學電容電壓量測(Electrochemical Capacitance-voltage) 49 3-6-4 光激發螢光量測(Photoluminescence, PL) 49 3-6-5 二次離子質譜儀(Second Ion Mass Spectrometry, SIMS) 51 第4章 實驗結果 52 4-1 砷化鍺分析 52 4-1-1 X-射線繞射分析(XRD) 52 4-1-2 能量色散X-射線光譜(Energy-dispersive X-ray spectroscopy) 54 4-2 擴散源分析與對擴散實驗之影響 56 4-2-1 不同砷化鍺 57 4-2-2 不同基板 63 4-2-3 調變退火溫度 65 4-2-4 調變退火時間 66 4-2-5 探討造成擴散之主因 69 4-3 鍺擴散的特性分析 70 4-3-1 砷蒸氣壓對擴散之影響 71 4-3-2 退火時間與擴散深度之關係 73 4-3-3 擴散後試片表層之摻雜態與濃度分布 75 4-3-4 光激發螢光光譜量測試片內缺陷型態 83 4-3-5 分析擴散前後試片內原子分布 90 4-4 應用鍺擴散技術於雷射磊晶片 93 4-5 氧的來源與對鍺擴散的影響 98 第5章 結論 102 第6章 參考文獻 103

    [1] T. H. Maiman, “Optical and Microwave-Optical Experiments in Ruby”, Phisical Reviw Letters, vol. 4, p. 564, June 1960.
    [2] R. N. Hall, G. E. Fenner, J. D. Kingsley, T. J. Soltys, and R. O. Carlson, “Coherent Light Emission From GaAs Junctions”, Phisical Reviw Letters, vol. 9, p. 366, November 1962.
    [3] R. D. Dupuis, P. D. Dapkus, Nick Holonyak Jr., E. A. Rezek and R. Chin, “Room‐temperature laser operation of quantum‐well Ga(1−x)AlxAs‐GaAs laser diodes grown by metalorganic chemical vapor deposition”, Applied Physics Letters, vol. 32, p. 295, 1978.
    [4] W. T. Tsang, C. Weisbuch, R. C. Miller and R. Dingle, “Current injection GaAs‐AlxGa1−xAs multi‐quantum‐well heterostructure lasers prepared by molecular beam epitaxy”, Applied Physics Letters, vol. 35, p. 673, 1979.
    [5] Martin Hempel, Jens W. Tomm, Fabio La Mattina, Ingmar Ratschinski, Martin Schade, Ivan Shorubalko, Michael Stiefel, Hartmut S. Leipner, Frank M. Kießling, and Thomas Elsaesser, “Microscopic Origins of Catastrophic Optical Damage in Diode Lasers”, IEEE Journal of Selected Topics in Quantum Electronics, vol. 19, No. 4, 2013.
    [6] W. C. Tang, Hal Rosen, Peter Vettiger and D.J. Webb, “Evidence for current-density-induced heating of AlGaAs single-quantum-well laser facets”, Applied Physics Letters, vol. 59, p. 1005, 1991.
    [7] M. Fukuda, M. Okayasu, J. Temmyo, and J. I. Nakano, “Degradation behavior of 0.98-μm strained quantum well InGaAs/AlGaAs lasers under high-power operation”, IEEE Journal of Quantum Electronics, vol. 30, p. 471, 1994.
    [8] C. L. Walker, A. C. Bryce and J. H. Marsh, “Improved catastrophic optical damage level from laser with nonabsorbing mirrors”, IEEE Phototonics Technology Letters, vol. 14, p. 1394, 2002.
    [9] W. D. Laidig, N. Holonyak Jr., M. D. Camras, K. Hess, J. J. Coleman, P. D. Dapkus and J. Bardeen, “Disorder of an AlAs‐GaAs superlattice by impurity diffusion”, Applied Physics Letters, vol. 38, p. 776, 1981.
    [10] D. G. Deppe and N. Holonyak Jr., “Atom diffusion and impurity-induced layer disordering in quantum well III-V semiconductor heterostructures”, Journal of Applied Physics, vol. 64, p. R93, 1988.
    [11] J.R. Manning, “Diffusion kinetics for atoms in crystals”, Van Nostrand, Princeton, 1968, pp. 95, 166.
    [12] Boon Siew Ooi, K. McIlvaney, Michael W. Street, Amr Saher Helmy, Stephen G. Ayling, A. Catrina Bryce, John H. Marsh, and J. S. Roberts, “Selective quantum-well intermixing in GaAs–AlGaAs structures using impurity-free vacancy diffusion”, Journal of Quantum Electronics, vol. 33, p. 10, 1997.
    [13] L. J. Guido, N. Holonyak Jr., K. C. Hsieh, R. W. Kaliski, W. E. Plano, R. D. Burnham, R. L. Thornton, J. E. Epler and T. L. Paoli, “Effects of dielectric encapsulation and As overpressure on Al‐Ga interdiffusion in AlxGa1−xAs‐GaAs quantum‐well heterostructures”, Journal of Applied Physics, vol. 61, p. 1372, 1987.
    [14] T. Y. Tan, S.Yu and U. Gösele, “Determination of vacancy and self-interstitial contributions to gallium self-diffusion in GaAs”, Journal of Applied Physics, vol. 70, p. 4823, 1991.
    [15] T. Y. Tan and U. Gösele, “Mechanisms of doping‐enhanced superlattice disordering and of gallium self‐diffusion in GaAs”, Applied Physics Letters, vol. 52, p. 1240, 1988.
    [16] P. Mei, H. W. Yoon, T. Venkatesan, S. A. Schwarz and J. P. Harbison, “Kinetics of silicon‐induced mixing of AlAs‐GaAs superlattices”, Applied Physics Letters, vol. 50, p. 1823, 1987.
    [17] T. Y. Tan and U. Gösele, “Diffusion mechanisms and superlattice disordering in GaAs”, Materials Science and Engineering B, vol. 1, p.47, 1988.
    [18] T. Y. Tan, U. Gösele and S. Yu, “Point defects, diffusion mechanisms, and superlattice disordering in gallium arsenide-based materials”, Critical Reviews in Solid State and Materials Sciences, vol. 17, p. 47, 1991.
    [19] D. G. Deppe, N. Holonyak Jr., W. E. Plano, V. M. Robbins, J. M. Dallesasse, K. C. Hsieh and J. E. Baker, “Impurity diffusion and layer interdiffusion in AlxGa1−xAs‐GaAs heterostructures”, Journal of Applied Physics, vol. 64, p. 1833, 1988.
    [20] D. G. Deppe, N. Holonyak Jr., K. C. Hsieh, P. Gavrilovic, W. Stutius and J. Williams, “Layer interdiffusion in Se-doped AlxGa1-xAs-GaAs superlattices”, Applied Physics Letters, vol. 51, p. 581, 1987.
    [21] R. W. Kaliski, D. W. Nam, D. G. Deppe, N. Holonyak Jr., K. C. Hsieh and R. D. Burnham, “Thermal annealing and photoluminescence measurements on AlxGa1−xAs‐GaAs quantum‐well heterostructures with Se and Mg sheet doping”, Journal of Applied Physics, vol. 62, p. 998, 1987.
    [22] L. Pavesi, Nguyen Hong Ky, J. D. Ganière, F. K. Reinhart, N. Baba‐Ali, I. Harrison, B. Tuck and M. Henini, “Role of point defects in the silicon diffusion in GaAs and Al0.3Ga0.7As and in the related superlattice disordering”, Journal of Applied Physics, vol. 71, p. 2225, 1992.
    [23] Paul Heitjans and Jörg Kärger, “Diffusion in Condensed Matter: Methods, Materials, Models”, Springer-Verlag Berlin Heidelberg, 2nd. Ed., 2005, p. 165.
    [24] U. Gösele and F. Morehead, “Diffusion of zinc in gallium arsenide: A new model”, Journal of Applied Physics, vol. 52, p. 4617, 1981.
    [25] R. L. Longini, “Rapid zinc diffusion in gallium arsenide”, Solid-State Electronics, vol. 5, p.127, 1962.
    [26] I. Harrison, H. P. Ho, B. Tuck, M. Henini, O. H. Hughes, “Zn diffusion-induced disorder in AlAs/GaAs superlattices”, Semiconductor Science and Technology, vol. 4, p. 841, 1989.
    [27] S. Yu, T. Y. Tan and U. Gösele, “Diffusion mechanism of zinc and beryllium in gallium arsenide”, Journal of Applied Physics, vol. 69, p. 3547, 1991.
    [28] R. L. S. Devine, C. T. Foxon, B. A. Joyce, J. B. Clegg, J. P. Gowers, “Beryllium diffusion across GaAs/(Al, Ga)As heterojunctions and GaAs/AlAs superlattices during MBE growth”, Applied Physics A, vol. 44, p.195, 1987.
    [29] D. G. Deppe, D. W. Nam, N. Holonyak Jr., K. C. Hsieh, J. E. Baker, C. P. Kuo, R. M. Fletcher, T. D. Osentowski and M. G. Craford, “Impurity‐induced layer disordering of high gap Iny(AlxGa1−x)1−yP heterostructures”, Applied Physics Letters, vol. 52, p. 1413, 1988.
    [30] Hoi-Jun Yoo and Young-Se Kwon, “Diffusion of zinc into GaAs through Al0.3Ga0.7As”, Journal of Electronic Materials, vol. 17, p. 337, 1988.
    [31] Adolph Fick, “On liquid diffusion”, Journal of Membrane Science, vol. 100, p. 33, 1985.
    [32] I. Harrison, H. P. Ho, B. Tuck, M. Henini and O. H. Hughes, “The effect of As on Zn diffusion-induced disordering of AlAs/GaAs superlattices”, Semiconductor Science and Technology, vol. 5, p.561, 1990.
    [33] K. K. Shih, J. W. Allen and G. L. Pearson, “Diffusion of zinc in gallium arsenide under excess arsenic pressure”, Journal of Physics and Chemistry of Solids, vol. 29, p. 379, 1968.
    [34] N. H. Ky, J. D. Ganière, F. K. Reinhart and B. Blanchard, “Background Si‐doping effects on Zn diffusion‐induced disordering in GaAs/AlGaAs multiple‐quantum‐well structures”, Journal of Applied Physics, vol. 79, p. 4009, 1996.
    [35] N. H. Ky, J. D. Ganière, M. Gailhanou, B. Blanchard, L. Pavesi, G. Burri, D. Araújo and F. K. Reinhart, “Self‐interstitial mechanism for Zn diffusion‐induced disordering of GaAs/AlxGa1-xAs (x=0.1-1) multiple‐quantum‐well structures”, Journal of Applied Physics, vol. 73, p. 3769, 1993.
    [36] Cynthia C. Lee, Michael D. Deal and John C. Bravman, “Diffusion of Implanted Be in AlxGa1-xAs as a Function of Al Concentration”, in Proceedings of the Twenty-First State-of-the-Art Program on Compound Semiconductors (SOTAPOCS XXI), S. N. G. Chu, Ed., Electrochemical Society, Pennington, 1995, pp. 85-95.
    [37] D. G. Deppe, W. E. Plano, J. M. Dallesasse, D. C. Hall, L. J. Guido and N. Holonyak Jr., “Buried heterostructure AlxGa1−xAs‐GaAs quantum well lasers by Ge diffusion from the vapor”, Applied Physics Letters, vol. 52, p. 825, 1988.
    [38] Mark E. Greiner and James F. Gibbons, “Diffusion of silicon in gallium arsenide using rapid thermal processing: Experiment and model”, Applied Physics Letters, vol. 44, p. 750, 1984.
    [39] D. G. Deppe, W. E. Plano, J. E. Baker, N. Holonyak Jr., M. J. Ludowise, C. P. Kuo, R. M. Fletcher, T. D. Osentowski and M. G. Craford, “Comparison of SiIII‐SiV and SiIII‐VIII diffusion models in III‐V heterostructures lattice matched to GaAs”, Applied Physics Letters, vol. 53, p. 2211, 1988.
    [40] D. G. Deppe, N. Holonyak Jr., F. A. Kish and J. E. Baker, “Background doping dependence of silicon diffusion in p‐type GaAs”, Applied Physics Letters, vol. 50, p. 998, 1987.
    [41] L. J. Guido, W. E. Plano, D. W. Nam, N. Holonyak, Jr. and J. E. Baker, “Effect of surface encapsulation and As4 overpressure on Si diffusion and impurity-induced layer disordering in GaAs, AlxGa1-xAs and AlxGa1-xAs-GaAs quantum well heterostructures”, Journal of Electronic Materials, vol. 17, p. 53, 1988.
    [42] E. Omura, X. S. Wu, G. A. Vawter, E. L. Hu, L. A. Coldren and J. L. Merz, “Silicon diffusion into AlxGa1−xAs (x=0-0.4) from a sputtered silicon film”, Applied Physics Letters, vol. 50, p. 265, 1987.
    [43] D. G. Deppe, G. S. Jackson, N. Holonyak Jr., D. C. Hall, R. D. Burnham, R. L. Thornton, J. E. Epler and T. L. Paoli, “Impurity‐induced layer‐disordered buried heterostructure AlxGa1−xAs‐GaAs quantum well edge‐injection laser array”, Applied Physics Letters, vol. 50, p. 392, 1987.
    [44] D. G. Deppe, K. C. Hsieh, N. Holonyak Jr., R. D. Burnham and R. L. Thornton, “Low‐threshold disorder‐defined buried‐heterostructure AlxGa1−xAs‐GaAs quantum well lasers”, Journal of Applied Physics, vol. 58, p. 4515, 1985.
    [45] R. L. Thornton, R. D. Burnham, T. L. Paoli, N. Holonyak Jr. and D. G. Deppe, “Low threshold planar buried heterostructure lasers fabricated by impurity‐induced disordering”, Applied Physics Letters, vol. 47, p. 1239, 1985.
    [46] C. W. Farley, T. S. Kim, S. D. Lester, B. G. Streetman and J. M. Anthony, “Complex compensation of Ge pulse‐diffused into GaAs”, Journal of The Electrochemical Society, vol. 134, p. 2888, 1987.
    [47] Tadashi Fukuzawa, Shigeru Semura, Hiroshi Saito, Tsuneaki Ohta, Yoko Uchida, and Hisao Nakashima, “GaAlAs buried multiquantum well lasers fabricated by diffusion‐induced disordering”, Applied Physics Letters, vol. 45, p. 1, 1984.
    [48] K. Y. Cheng, “Compound Semiconductors and Devices-An Introduction”, 2012.
    [49] Richard E. Honig, “Vapor pressure data for solid and liquid elements”, RCA Review, 1962, pp. 567-586.
    [50] A. Lisak and K. Fitzner, “Vapor pressure measurements of arsenic and arsenic trioxide over condensed phases”, Journal of Phase Equilibria, vol. 15, p.151, 1994.
    [51] R.W. Olesinski and G. J. Abbaschian, “The As-Ge (arsenic-germanium) system”, Bulletin of Alloy Phase Diagrams, vol. 6, p. 250, 1985.
    [52] Ben G. Streetman and Sanjay Kumar Banerjee, “Solid state electronic device”, 6th Ed., Pearson Education International, 2006.
    [53] 斯頌平(spszu@phys.nchu.edu.tw), “X-Ray Diffraction (XRD)”, 2012.
    http://ezphysics.nchu.edu.tw/CTSP/XRD%20power%20point.pdf
    [54] J.W. Morris, Jr, “Defects in crystals”, class notes for MSE 200, Department of Materials Science and Engineering, University of Berkeley, Fall 2008, p. 76.
    [55] Pavel Lejček, “Grain boundaries: description, structure and thermodynamics”, in Grain Boundary Segregation in Metals, Springer, 2010, pp. 5-24.
    [56] Bob Hafner, “Energy dispersive spectroscopy on the SEM: a primer”, class notes for EDS Analysis on the SEM, Characterization Facility, University of Minnesota.
    [57] Reena Khare and Evelyn L. Hu, “Dopant Selective Photoelectrochemical Etching of GaAs Homostructures”, Journal of The Electrochemical Society, vol. 138, p.1516, 1991.
    [58] J. M. Ryan, J. W. Huang, T. F. Kuech and K. L. Bray, “The effects of temperature and oxygen concentration on the photoluminescence of epitaxial metalorganic vapor-phase epitaxy GaAs:O”, Journal of Applied Physics, vol. 76, p. 1175, 1994.
    [59] P. K. Chatterjee, K.V. Vaidyanathan, M.S. Durschlag and B.G. Streetman, “Photoluminescence study of native defects in annealed GaAs”, Solid State Communications, vol. 17, p. 1421, 1975.
    [60] Vladimir Bondarenko, “Positron annihilation study of equilibrium point defects in GaAs”, Ph.D. dissertation, Martin-Luther-Universität Halle-Wittenberg, Halle(Saale), November 2003.
    [61] 尤志州、王志傑、廖尉斯、黃冠群。〈歐傑電子能譜(AES)、二次離子質譜儀分析(SIMS)與化學分析電子術(ESCA)〉。台灣大學化學系。(1999)
    [62] WeiFu Wang, Kai-Yuan Cheng, Ching-Yi Huang, Wei-Ting Liu, Bao-Hsien Wu, Yu-Chen Cheng and Kuang-Chien Hsieh, “Selective and tunable red- or blue-shift emissions of GaAsP quantum well heterostructures”, in SPIE Proceedings, vol. 9382, 2015.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE