簡易檢索 / 詳目顯示

研究生: 黃哲偉
Huang, Che-Wei
論文名稱: α-二亞胺基低配位鈷、鎳錯合物的結構與化性研究
Cobalt and Nickel Low-coordinate Complexes Supported by α-Diimine Ligand: Synthesis, Structure and Reactivity Study
指導教授: 蔡易州
Tsai, Yi-Chou
口試委員: 劉瑞雄
許智能
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 117
中文關鍵詞: α-二亞胺基低配位錯合物
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文中,成功的合成且鑑定出一系列低配位的α-二亞胺基鈷與鎳金屬錯合物。在甲苯中以一當量的KC8還原(o,o’-iPr2C6H3-DAB)CoCl2 (o,o’-iPr2C6H3-DAB = 2.3-dimethyl-1,4-bis- (2,6-diisopropylphenyl)-1,4-diaza-1,3-butadiene),可得到雙鈷錯合物[(o,o’-iPr2C6H3-DAB)Co(μ-Cl)]2 (1);若改以兩當量還原,則得到半三明治式錯合物[(o,o’-iPr2C6H3-DAB)Co(η6-C7H8)] (2);若使用乙醚或四氫呋喃做為溶劑還原(o,o’-R2C6H3-DAB)CoCl2 (R = iPr, Et),可得到二聚體[(o,o’-R2C6H3-DAB)Co]2 (R = iPr (3), Et (4))。將錯合物2或3分別與白磷反應,皆可得到錯合物(μ-η4:η4-P4)[Co(o,o’-iPr2C6H3-DAB)]2 (5),結構中磷原子形成平面結構以□4橋接兩個鈷金屬;而將錯合物2或3分別與硒元素反應,皆得到錯合物[(o,o’-iPr2C6H3-DAB)Co(μ-Se)]2 (6),結構中硒原子橋接在兩個鈷金屬之間。
    在甲苯中以兩當量的KC8還原(o,o’-iPr2C6H3-DAB)NiI2,可分離出反三明治式錯合物(μ-η3: η3-C7H8)[Ni(o,o’-iPr2C6H3-DAB)]2 (7);若改用乙醚或四氫呋喃做為還原的溶劑,可得到具鎳-鎳鍵結構的錯合物[(o,o’-iPr2C6H3-DAB)Ni]2 (8),其鎳-鎳鍵長為2.2946(8) A;以三當量KC8進行還原反應,則得到反三明治式錯合物(μ-η3: η3-C6H6)[Ni(o,o’-iPr2C6H3-DAB)]2(Et2O)2(THF)2 (9)。若以兩當量的KC8還原配基立障較小的□-二亞胺配基鎳錯合物(o,o’-Et2C6H3-DAB)NiI2,則是合成出逆磁性扭曲四面體的單核錯合物 [Ni(o,o’-Et2C6H3-DAB)2] (10)。
    將錯合物8與白磷反應,得到四個磷原子橋接的雙核錯合物(μ-η4: η4-P4)[Ni(o,o’-iPr2C6H3-DAB)]2 (11),這是一個與錯合物5類似的結構。與1,3,5,7-環辛四烯(簡寫為COT)反應,得到trans-(η2,2,η2,2- COT)[Ni(o,o’-iPr2C6H3-DAB)]2 (12),結構中的1,3,5,7-環辛四烯分別以1,5及3,7位置的π鍵配位於兩個鎳金屬。二苯乙炔、苯乙炔以及苯甲腈與錯合物8反應後,會被還原成雙鍵,並配位在鎳金屬上,形成平面四方形的單核錯合物(η2-X)[Ni(o,o’-iPr2C6H3-DAB)] (X = PhCCPh (13), HCCPh (14), NCPh (15))。


    In this thesis, a series of low-coordinate α-diimine cobalt and nickel complexes were successfully synthesized and characterized. Reduction of (o,o’-iPr2C6H3-DAB)CoCl2 (o,o’-iPr2C6H3-DAB = 2.3-dimethyl-1,4-bis- (2,6-diisopropylphenyl)-1,4-diaza-1,3-butadiene) by one equivalent of KC8 in toluene afforded a dicobalt complex [(o,o’-iPr2C6H3-DAB)Co(μ-Cl)]2 (1). However, when the amount of KC8 was increased from one to two equivalent, a half-sandwich complex [(o,o’-iPr2C6H3-DAB)Co(η6-C7H8)] (2) was generated. Interestingly, two dimeric complexes [(o,o’-R2C6H3-DAB)Co]2 (R = iPr (3), Et (4)) were isolated, if the reduction of (o,o’-R2C6H3-DAB)CoCl2 (R = iPr, Et) was carried out in ether or THF. Both 2 and 3 reacted with white phosphorus to lead to the isolation of a P4-bridged dicobalt complex (μ-η4: η4-P4)[Co(o,o’-iPr2C6H3-DAB)]2 (5), where the bridging square planar P4 coordinate to each cobalt atom in an □4 fashion. Furthermore, treatment of both complexes 2 and 3 with elemental selenium produced [(o,o’-iPr2C6H3-DAB)Co(μ-Se)]2 (6), in which two elemental selenium atoms bridge two cobalt atoms.
    Reduction of (o,o’-iPr2C6H3-DAB)NiI2 by two equivalent of KC8 in toluene led to the isolation of an inverted-sandwich complex (μ-η3:η3-C7H8)[Ni(o,o’-iPr2C6H3-DAB)]2 (7). Interestingly, when the reduction was carried out in ether or THF, a Ni-Ni bonded complex [(o,o’-iPr2C6H3-DAB)Ni]2 (8) (Ni-Ni, 2.2946(8) A) was obtained. Notably, when the amount of KC8 was increased from two to three equivalent, an inverted-sandwich complex (μ-η3:η3-C6H6)[Ni(o,o’- iPr2C6H3-DAB)]2(Et2O)2(THF)2 (9) was obtained. Upon reduction of the less hindered (o,o’-Et2C6H3-DAB)NiI2 by two equivalent of KC8, a mononuclear distorted tetrahedral complex [Ni(o,o’-Et2C6H3-DAB)2] (10) was isolated.
    Reaction of complex 8 with white phosphorus yielded a P4-bridged dinuclear complex (μ-η4:η4-P4)[Ni(o,o’-iPr2C6H3-DAB)]2 (11), in which the structure is similar to 5. Treatment of 8 with COT (COT = 1,3,5,7-cyclooctatetraene) yielded trans-(η2,2,η2,2-COT)[Ni(o,o’- iPr2C6H3-DAB)]2 (12), where COT coordinates to each nickel atom by 1,5 and 3,7 position π-bond. Diphenylacetylene, phenylacetylene and benzonitrile were reduced to double bond by 8 upon coordination to nickel atom forming mononuclear square planar complexes (η2-X)[Ni(o,o’-iPr2C6H3-DAB)] (X = PhCCPh (13), HCCPh (14), NCPh (15)).

    中文摘要 I Abstract III 謝誌 V 目錄 VIII 圖目錄 X 流程圖目錄 XI 表目錄 XII 第一章 緒論 1 1-1. 前言 1 1-2. 金屬-金屬鍵的發展 1 1-2-1. 雙金屬多重鍵的發展 1 1-2-2. 鈷-鈷鍵雙核錯合物 4 1-2-3. 鎳-鎳鍵雙核錯合物 6 1-3. 小分子活化 9 1-3-1. 前言 9 1-3-2. 三明治式金屬錯合物與小分子活化 10 1-3-3. 金屬-金屬鍵錯合物與小分子活化 13 1-4. Redox-noninnocent配基 15 1-5. 研究方向 18 第二章 α-二亞胺基鈷金屬錯合物的合成及反應性研究 19 2-1. 前言 19 2-2. 錯合物 [(o,o’-iPr2C6H3-DAB)Co(μ-Cl)]2 (1)的合成與鑑定 21 2-3. 錯合物 [(o,o’-iPr2C6H3-DAB)Co(η6-C7H8)] (2)的合成與鑑定 24 2-4. 錯合物 [(o,o’-R2C6H3-DAB)Co]2 (R = iPr (3), Et (4))合成與鑑定 29 2-5. 錯合物 (μ-η4:η4-P4)[Co(o,o’-iPr2C6H3-DAB)]2 (5)的合成與鑑定 39 2-6. 錯合物 [(o,o’-iPr2C6H3-DAB)Co(μ-Se)]2 (6)的合成與鑑定 44 2-7. 結論 47 第三章 α-二亞胺基鎳金屬錯合物的合成及結構研究 49 3-1. 前言 49 3-2. 錯合物 (μ-η3:η3-C7H8)[Ni(o,o’-iPr2C6H3-DAB)]2 (7)的合成與鑑定 51 3-3. 錯合物 [(o,o’-iPr2C6H3-DAB)Ni]2 (8)的合成與鑑定 55 3-4. 錯合物 (μ-η3:η3-C6H6)[Ni(o,o’-iPr2C6H3-DAB)]2(Et2O)2(THF)2 (9)的合成與鑑定 60 3-5. 錯合物 [Ni(o,o’-Et2C6H3-DAB)2] (10)的合成與鑑定 65 3-6. 結論 69 第四章 α-二亞胺基鎳-鎳鍵金屬錯合物的反應性研究 71 4-1. 錯合物 (μ-η4:η4-P4)[Ni(o,o’-iPr2C6H3-DAB)]2 (11)的合成與鑑定 71 4-2. 錯合物 (μ-η2,2,η2,2-COT)[Ni(o,o’-iPr2C6H3-DAB)]2 (12)的合成與鑑定 75 4-3. 錯合物 (η2-X)[Ni(o,o’-iPr2C6H3-DAB)] (X = PhCCPh (13), HCCPh (14), NCPh (15))的合成與鑑定 78 4-4. 結論 82 第五章 實驗步驟 84 5-1. 實驗使用儀器暨一般操作 84 5-2. 實驗藥品及溶劑 85 5-3. 實驗步驟 87 5-3-1. 錯合物 [(o,o’-iPr2C6H3-DAB)Co(μ-Cl)]2 (1)的合成 87 5-3-2. 錯合物 [(o,o’-iPr2C6H3-DAB)Co(η6-C7H8)] (2)的合成 87 5-3-3. 錯合物 [(o,o’-iPr2C6H3-DAB)Co]2 (3)的合成 88 5-3-4. 錯合物 [(o,o’-Et2C6H3-DAB)Co]2 (4)的合成 89 5-3-5. 錯合物 (μ-η4:η4-P4)[Co(o,o’-iPr2C6H3-DAB)]2 (5)的合成 89 5-3-6. 錯合物 [(o,o’-iPr2C6H3-DAB)Co(μ-Se)]2 (6)的合成 90 5-3-7. 錯合物 (μ-η3:η3-C7H8)[Ni(o,o’-iPr2C6H3-DAB)]2 (7)的合成 91 5-3-8. 錯合物 [(o,o’-iPr2C6H3-DAB)Ni]2 (8)的合成 92 5-3-9. 錯合物 (□-□3:□3-C6H6)[Ni(o,o’-iPr2C6H3-DAB)]2(Et2O)2(THF)2 (9)的合成 92 5-3-10. 錯合物 [Ni(o,o’-Et2C6H3-DAB)2] (10)的合成 93 5-3-11. 錯合物 (μ-η4:η4-P4) [Ni(o,o’-iPr2C6H3-DAB)]2 (11)的合成 94 5-3-12. 錯合物 (μ-η2,2,η2,2-COT)[Ni(o,o’-iPr2C6H3-DAB)]2 (12)的合成 94 5-3-13. 錯合物 (η2-PhCCPh)[Ni(o,o’-iPr2C6H3-DAB)] (13)的合成 95 5-3-14. 錯合物 (η2-HCCPh)[Ni(o,o’-iPr2C6H3-DAB)] (14)的合成 96 5-3-15. 錯合物 (η2-NCPh)[Ni(o,o’-iPr2C6H3-DAB)] (15)的合成 97 第六章 晶體結構資料 99 參考文獻 114

    (1) Reithofer, M. R.; Muller, P.; Schrock, R. R. J. Am. Chem. Soc. 2010, 132, 8349–8358.
    (2) Smith, J. M.; Sadique, A. R.; Cundari, T. R.; Rodgers, K. R.; Lukat-Rodgers, G.; Lachicotte, R. J.; Flaschenriem, C. J.; Vela, J.; Holland, P. L. J. Am. Chem. Soc. 2006, 128, 756-769.
    (3) Listemann, M. L.; Sturgeoff, L. G.; Schrock, R. R. J. Am. Chem. Soc. 1982, 104, 4291–4293.
    (4) Wang, P.-Y.; Chen, S.-A.; Chen, J.-M.; Tsai, Y.-C. J. Am. Chem. Soc. 2007, 129, 8066-8067.
    (5) Wang, P.-Y.; Lin, K.-M.; Chen, S.-A.; Chen, J.-M.; Tsai, Y.-C. Chem. Commun. 2008, 205–207.
    (6) Monillas, W. H.; Yap, G. P. A.; Theopold, K. H. Angew. Chem. Int. Ed. 2007, 46, 6692 –6694.
    (7) Bai, G.; Wei, P.; Stephan, D. W. Organometallics 2005, 24,, 5901-5908.
    (8) Schulten, C.; Fohlmeister, L.; Stasch, A.; Murray, K. S.; Moubaraki, B.; Kohl, S.; Ertem, M. Z.; Gagliardi, L.; Cramer, C. J.; Jones, C. Chem. Eur. J. 2011, 17, 1294 – 1303.
    (9) 張凱傑 國立清華大學化學研究所碩士論文 民國九十八年.
    (10) Bart, S. C.; Hawrelak, E. J.; Lobkovsky, E.; Chirik, P. J. Organometallics 2005, 24, 5518-5527.
    (11) Dai, X.; Kapoor, P.; Warren, T. H. J. Am. Chem. Soc. 2004, 126, 4798-4799.
    (12) Schulten, C.; Rose, R. P.; Stasch, A.; Aldridge, S.; Woodul, W. D.; Murray, K. S.; Moubaraki, B.; Brynda, M.; Macchia, G. L.; Gagliardi, L.; Jones, C. Angew. Chem. Int. Ed. 2009, 48, 7406 –7410.
    (13) Rose, R. P.; Schulten, C.; Aldridge, S.; Stasch, A.; Jones, C. Chem. Eur. J. 2008, 14, 8477 – 8480.
    (14) Ghosh, M.; Sproules, S.; Weyhermuller, T.; Wieghardt, K. Inorg. Chem. 2008, 47, 5963-5970.
    (15) Kauffman, G. B. Coord. Chem. Rev. 1973, 9, 339-363.
    (16) Kauffman, G. B. Coord. Chem. Rev. 1975, 15, 1-92.
    (17) Brosset, C. Nature(London) 1935, 135, 874.
    (18) Bertraad, J. A.; Dollase, W. A.; Cotton, F. A. Inorg. Chem. 1963, 2, 1166-1171.
    (19) Curtis, N. F.; Harris, C. B.; Johnson, B. F. G.; Lippard, S. J.; Mague, J. T.; Robinson, W. R.; Wood, J. S.; Cotton, F. A. Science 1964, 145, 1305-1307.
    (20) Cotton, F. A. Inorg. Chem. 1965, 4, 334-336.
    (21) Harris, C. B.; Cotton, F. A. Inorg. Chem. 1965, 4(3), 330-333.
    (22) Murillo, C. A.; Walton, R. A.; Cotton, F. A. Multiple Bonds Between Metal Atoms 2005.
    (23) Nguyen, T.; Sutton, A. D.; Brynda, M.; Fettinger, J. C.; Long, G. J.; Power, P. P. Science 2005, 310, 844-847.
    (24) Hsu, C.-W.; Yu, J.-S. K.; Yen, C.-H.; Lee, G.-H.; Wang, Y.; Tsai, Y.-C. Angew. Chem. Int. Ed. 2008, 47, 9933 –9936.
    (25) Kreisel, K. A.; Yap, G. P. A.; Dmitrenko, O.; Landis, C. R.; Theopold, K. H. J. Am. Chem. Soc. 2007, 129, 14162-14163.
    (26) Noor, A.; Wagner, F. R.; Kempe, R. Angew. Chem. Int. Ed. 2008, 47, 7246 –7249.
    (27) Noor, A.; Glatz, G.; Muller, R.; Kaupp, M.; Demeshko, S.; Kempe, R. Z. Anorg. Allg. Chem. 2009, 635, 1149-1152.
    (28) Nguyen, T.; Merrill, W. A.; Ni, C.; Lei, H.; Fettinger, J. C.; Ellis, B. D.; Long, G. J.; Brynda, M.; Power, P. P. Angew. Chem. Int. Ed. 2008, 47, 9115 –9117.
    (29) Pauling, L. Proc. Natl. Acad. Sci. USA 1976, 73, 4290 – 4293.
    (30) Ding, K.; Pierpont, A. W.; Brennessel, W. W.; Lukat-Rodgers, G.; Rodgers, K. R.; Cundari, T. R.; Bill, E.; Holland, P. L. J. Am. Chem. Soc. 2009, 131, 9471–9472.
    (31) Pfirrmann, S.; Yao, S.; Ziemer, B.; Stosser, R.; Driess, M.; Limberg, C. Organometallics 2009, 28, 6855–6860.
    (32) Whittlesey, B. R.; Jones, R. A. Inorg. Chem. 1986, 25, 852-856.
    (33) Wilkinson, G.; Rosenblum, M.; Whiting, M. C.; Woodward, R. B. J. Am. Chem. Soc. 1952, 74, 2125–2126.
    (34) Miller, S. A.; Tebboth, J. A.; Tremaine, J. F. J. Chem. Soc. 1952
    653.
    (35) Kealy, T. J.; Paulson, P. L. Nature (London) 1951, 168, 1039 -1040.
    (36) Lawton, D.; Mason, R. J. Am. Chem. Soc. 1965, 87, 921–922.
    (37) Huq, F.; Mowat, W.; Shortlan, A.; Skapski, A. C.; Wilkinson, G. Chem. Commun. 1971, 1079-1080.
    (38) van Koten, G.; Vrieze, K. Adv. Organomet. Chem. 1982, 21, 151-239.
    (39) Richter, S.; Daul, C.; vonZelewsky, A. Inorg. Chem. 1976, 15, 943–948.
    (40) Corvaja, C.; Pasimeni, L. Chem. Phys. Lett. 1976, 39, 261-264
    (41) Hanson, G. R.; Henderson, M. J.; Hitchcock, P. B.; Rastonc, C. L.; Cloke, F. G. N. J. Chem. Soc., Chem. Commun. 1989, 1002-1003.
    (42) Cloke, F. G. N.; Dalby, C. I.; Henderson, M. J.; Hitchcock, P. B.; Kennard, C. H. L.; Lamb, R. N.; Raston, C. L. J. Chem. Soc., Chem. Commun. 1990, 1394-1396.
    (43) Cardiner, M. G.; Hanson, G. R.; Henderson, M. J.; Lee, F. C.; Raston, C. L. Inorg. Chem. 1994, 33, 2456-2461.
    (44) Rijnberg, E.; Richter, B.; Thiele, K.-H.; Boersma, J.; Veldman, N.; Spek, A. L.; van Koten, G. Inorg. Chem. 1998, 37, 56-63.
    (45) Neumann, B.; Stammler, H.-G.; Thomas Pott, P. J. Organometallics 2001, 20, 1965–1967.
    (46) Baker, R. J.; Farley, R. D.; Mills, D. P.; Kloth, M.; Murphy, D. M.; Jones, C. Chem. Eur. J. 2005, 11, 2972 – 2982.
    (47) Pott, T.; Kaim, W.; Schoeller, W. W.; Neumann, B.; Stammler, A.; Stammler, H.-G.; Wanner, M.; Jutzi, P. Organometallics 2002, 21, 3169-3172.
    (48) Armstrongb, A. F.; Tuononen, H. M. Dalton Trans 2006, 1885–1894.
    (49) Armstrong, A. F.; Tuononen, H. M. Inorg. Chem. 2005, 44, 8277-8284.
    (50) Muresan, N.; Chlopek, K.; Weyhermu1ller, T.; Neese, F.; Wieghardt, K. Inorg. Chem. 2007, 46, 5327-5337.
    (51) Muresan, N.; Lu, C. C.; Ghosh, M.; Peters, J. C.; Abe, M.; Henling, L. M.; Weyhermoller, T.; Bill, E.; Wieghardt, K. Inorg. Chem. 2008, 47, 4579-4590.
    (52) Abrams, M. B.; Scott, B. L.; Baker, R. T. Organometallics 2000, 19, 4944-4956
    (53) Rosa, V.; Gonzalez, P. J.; Aviles, T.; Gomes, P. T.; Welter, R.; Rizzi, A. C.; Passeggi, M. C. G.; Brondino, C. D. Eur. J. Inorg. Chem. 2006, 4761–4769.
    (54) Evans, D. F. J. Chem. Soc. 1959, 2003.
    (55) Dielmann, F.; Sierka, M.; V, A.; Virovets; Scheer, M. Angew. Chem. Int. Ed. 2010, 49, 6860 –6864.
    (56) Weber, L. Chem. Rev. 1992, 92, 1839-1906.
    (57) Seidel, W. W.; Summerscales, O. T.; Patrick, B. O.; Fryzuk, M. D. Angew. Chem. Int. Ed. 2009, 48, 115 –117.
    (58) Yao, S.; Xiong, Y.; Zhang, X.; Schlangen, M.; Schwarz, H.; Milsmann, C.; Driess, M. Angew. Chem. Int. Ed. 2009, 48, 4551 –4554.
    (59) Ansari, M. A.; Chau, C.-N.; Mahler, C. H.; Ibers, J. A. Inorg. Chem. 1989, 28, 650-654.
    (60) Nelkenbaum, E.; Kapon, M.; Eisen, M. S. Organometallics 2005, 24, 2645-2659.
    (61) Meinhard, D.; Reuter, P.; Rieger, B. Organometallics 2007, 26, 751-754.
    (62) Xie, Y.; III, H. F. S.; King, R. B. J. Am. Chem. Soc. 2005, 127, 2818-2819.
    (63) Liu, Y.; Li, S.; Xiao-Juan Yang; Yang, P.; Gao, J.; Xia, Y.; Wu, B. Organometallics 2009, 28, 5270–5272.
    (64) Muresan, N.; Chlopek, K.; Weyhermuller, T.; Neese, F.; Wieghardt, K. Inorg. Chem. 2007, 46, 5327-5337.
    (65) Mariani, M.; Seghi, B.; Francesca; Fabbrizzi, Z. Inorg. Chem. 1989, 28, 3362-3366.
    (66) Dickens, B.; Lipscomb, W. N. J. Am. Chem. Soc. 1961, 83 4862–4863.
    (67) Dickens, B.; Lipscomb, W. N. J. Am. Chem. Soc. 1961, 83, 489–490.
    (68) Fleischer, E. B.; Stone, A. L.; Dewar, R. B. K.; Wright, J. D.; Keller, C. E.; Pettit, R. J. Am. Chem. Soc. 1966, 88, 3158–3159.
    (69) Schmiege, B. M.; Lorenz, S. E.; Miller, K. A.; Champagne, T. M.; Ziller, J. W.; DiPasquale, A. G.; Rheingold, A. L.; Evans, W. J. J. Am. Chem. Soc. 2008, 130, 8555–8563.
    (70) Miller, K. A.; Kozimor, S. A.; Ziller, J. W.; DiPasquale, A. G.; Rheingold, A. L.; Evans, W. J. Organometallics 2007, 26, 3568-3576.
    (71) Podall, H.; Foster, W. E.; Giraitis, A. P. J. Org. Chem. 1958, 23, 82-85.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE