研究生: |
李育全 Lee, Yu-Chaun |
---|---|
論文名稱: |
臨場觀察鎳金屬與矽鍺奈米線之反應暨 利用氧化層調變擴散機制之研究 Direct Observation of Solid State Reaction of Si1-xGex Nanowires with Ni and Modulation of the Diffusion Mechanisms via Oxide Layer Managements |
指導教授: |
呂明諺
Lu, Ming-Yen |
口試委員: |
呂明霈
Lu, Ming-Pei 吳文偉 Wu, Wen-Wei |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 54 |
中文關鍵詞: | 矽鍺奈米線 、鎳矽化物 、臨場觀察 、擴散機制 、擴散阻礙層 |
外文關鍵詞: | Si1-xGex, Nickel silicide, in-situ TEM, Diffusion mechanism, Diffusion barrier |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要探討矽鍺奈米線和鎳進行固態反應,藉由臨場觀察的方式探討反應發生的機制。
首先針對矽鍺奈米線進行性質的分析,使用顯微拉曼光譜鑑定其內部鍵結,藉由光譜上約400 cm-1處的峰值判定矽鍺合金鍵結,並使用TEM分析與EDS量測判定矽鍺奈米線中的矽鍺含量比值,本實驗所使用的矽鍺奈米線之鍺含量約為10%。
之後利用臨場加熱之穿透式電子顯微鏡可以成功使矽鍺奈米線和鎳金屬在450 ℃下發生反應,並記錄下反應過程,計算成長速率為0.46 nm/s及反應活化能為0.708 eV / atom,使用球面像差修正掃描穿透式電子顯微鏡分析反應物的成分與結構,觀察到正交晶系的Ni2Si生成。在加入氧化鋁阻礙層後,成長速率減緩,鎳的擴散變得緩慢使得反應機制受到影響並產生NiSi與Ni2Si兩種生成物。此外,於加熱後發現,矽鍺奈米線與鎳反應後會有斷裂的情形產生,根據EDS分析了解其斷裂受到鍺元素成份的影響。
In CMOS technology, the metal silicides/germanides have prominent advantages such as low resistivity, high thermal stability, and chemical stability. Here, we conducted the study to probe the phase transformations and the diffusion behavior of Ni in Si1-xGex nanowire (NW) by in-situ transmission electron microscope (TEM).
First, the structural analysis of the Si1-xGex NW was carried out by Raman spectrum and TEM. From Raman results, the vibration mode at ~400 cm-1 is confirmed to be the Si-Ge bonding. Additionally, we affirmed the Ge content of 10% in the Si1-xGex NW by TEM and energy-dispersive X-ray spectroscopy (EDS).
Afterwards, the Si1-xGex NWs was dispersed on TEM Si3N4 membrane and contacted with Ni by E-beam lithography process for in-situ study. The sample was then heated to the 450 ℃, Ni diffused into Si1-xGex NW and formed Ni2Si, the diffusion mechanism is confirmed to be reaction-controlled. The growth rate of Ni2Si formation is 0.46 nm/s and the activation energy is 0.708 eV / atom. On the other hand, we conducted the in-situ study using Al2O3 layer-coated Si1-xGex NW, the Al2O3 layer serves as the diffusion barrier. Importantly, we found that the diffusion mechanism was changed. Furthermore, the Si1-xGex NW would be broken after heating process, which might be due to the segregation of Ge. The results have potentials to provide the insights for device fabrication in semiconducting manufacturing.
1. Wagner, R.S. and W.C. Ellis, Vapor‐Liquid‐Solid Mechanism of Single Crystal Growth. Applied Physics Letters. 4(5): p. 89-90, 1964.
2. Iijima, S., Helical Microtubules of Graphitic Carbon. Nature. 354: p. 56, 1991.
3. Kodambaka, S., et al., Diameter-Independent Kinetics in the Vapor-Liquid-Solid Growth of Si Nanowires. Physical Review Letters. 96(9): p. 096105, 2006.
4. Sanjay, K.S., et al., Large Area Fabrication of Vertical Silicon Nanowire Arrays by Silver-Assisted Single-Step Chemical Etching and Their Formation Kinetics. Nanotechnology. 25(17): p. 175601, 2014.
5. Cui, Y., et al., High Performance Silicon Nanowire Field Effect Transistors. Nano Letters. 3(2): p. 149-152, 2003.
6. Wang, D., Synthesis and Properties of Germanium Nanowires. Pure and Applied Chemistry. 79(1): p. 55-65, 2007.
7. Kim, C.-J., et al., Fabrication of Si1−xGex Alloy Nanowire Field-Effect Transistors. Applied Physics Letters. 91(3): p. 033104-1 - 033104-3, 2007.
8. Yang, J.-E., et al., Band-Gap Modulation in Single-Crystalline Si1-xGex Nanowires. Nano Letters. 6(12): p. 2679-2684, 2006.
9. Kasper, E. and H.J. Herzog, Structural properties of silicon–germanium (SiGe) nanostructures, in Silicon–Germanium (SiGe) Nanostructures, Y. Shiraki and N. Usami, Editors, Woodhead Publishing. p. 3-25, 2011.
10. Nishimura, C., et al., Raman Characterization of Ge Distribution in Individual Si1−xGex Alloy Nanowires. Applied Physics Letters. 93(20): p. 203101-1 - 203101-3, 2008.
11. Lu, Q., et al., Raman Scattering from Si1-xGex Alloy Nanowires. The Journal of Physical Chemistry C. 112(9): p. 3209-3215, 2008.
12. Xiang, B., et al., Synthesis and Field Emission Properties of TiSi2 Nanowires. Applied Physics Letters. 86(24), 2005.
13. Lin, H.-K., et al., Ti5Si3 Nanowire and Its Field Emission Property. Chemistry of Materials. 20(7): p. 2429-2431, 2008.
14. Hsin, C.L., S.Y. Yu, and W.W. Wu, Cobalt Silicide Nanocables Grown on Co Films: Synthesis and Physical Properties. Nanotechnology. 21(48): p. 485602, 2010.
15. Schmitt, A.L., et al., Metallic Single-Crystal CoSi Nanowires via Chemical Vapor Deposition of Single-Source Precursor. The Journal of Physical Chemistry B. 110(37): p. 18142-18146, 2006.
16. Lee, C.-Y., et al., Vertically Well-Aligned Epitaxial Ni31Si12 Nanowire Arrays with Excellent Field Emission Properties. Applied Physics Letters. 93(11), 2008.
17. Lee, C.-Y., et al., Free-Standing Single-Crystal NiSi2 Nanowires with Excellent Electrical Transport and Field Emission Properties. The Journal of Physical Chemistry C. 113(6): p. 2286-2289, 2009.
18. Song, Y., A.L. Schmitt, and S. Jin, Ultralong Single-Crystal Metallic Ni2Si Nanowires with Low Resistivity. Nano Letters. 7(4): p. 965-969, 2007.
19. Lu, K.-C., et al., In situ Control of Atomic-Scale Si Layer with Huge Strain in the Nanoheterostructure NiSi/Si/NiSi through Point Contact Reaction. Nano Letters. 7(8): p. 2389-2394, 2007.
20. Burchhart, T., et al., Atomic Scale Alignment of Copper-Germanide Contacts for Ge Nanowire Metal Oxide Field Effect Transistors. Nano Letters. 9(11): p. 3739-3742, 2009.
21. Yan, C., et al., Spontaneous Growth and Phase Transformation of Highly Conductive Nickel Germanide Nanowires. ACS Nano. 5(6): p. 5006-5014, 2011.
22. Tsai, C.-I., et al., Electrical Properties and Magnetic Response of Cobalt Germanosilicide Nanowires. ACS Nano. 5(12): p. 9552-9558, 2011.
23. Schmitt, A.L., et al., Synthesis and Applications of Metal Silicide Nanowires. Journal of Materials Chemistry. 20(2): p. 223-235, 2010.
24. Tang, J., et al., Ferromagnetic Germanide in Ge Nanowire Transistors for Spintronics Application. ACS Nano. 6(6): p. 5710-5717, 2012.
25. Hsieh, Y.-H., et al., Dynamic Observation on the Growth Behaviors in Manganese Silicide/Silicon Nanowire Heterostructures. Nanoscale. 7(5): p. 1776-1781, 2015.
26. Liu, X.H., et al., Reversible Nanopore Formation in Ge Nanowires During Lithiation-Delithiation Cycling: an in situ Transmission Electron Microscopy Study. Nano Lett. 11(9): p. 3991-7, 2011.
27. Legros, M., D.S. Gianola, and K.J. Hemker, In situ TEM Observations of Fast Grain-Boundary Motion in Stressed Nanocrystalline Aluminum Films. Acta Materialia. 56(14): p. 3380-3393, 2008.
28. Parditka, B., et al., The Transition from Linear to Parabolic Growth of Cu3Si Phase in Cu/a-Si System. Scripta Materialia. 149: p. 36-39, 2018.
29. Nava, F., et al., The Oxygen Effect in the Growth Kinetics of Platinum Silicides. Journal of Applied Physics. 52(11): p. 6641-6646, 1981.
30. Pey, K.L., et al., Stability and Composition of Ni–Germanosilicided Si1−xGex Films. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena. 22(2): p. 852-858, 2004.