研究生: |
楊添麟 Tian-Lin Yang |
---|---|
論文名稱: |
基於頻域分析之透明物體光線模型建立 Modeling of transparent object based on frequency-domain analysis |
指導教授: |
黃仲陵
Chung-Lin Huang 張意政 I.C. Chang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 英文 |
論文頁數: | 66 |
中文關鍵詞: | 影像合成 、反射 、折射 、透明 |
外文關鍵詞: | environment matting, refraction, reflection, Kaczmarz, alpha channel, transparent |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
數位影像合成是一門相當重要且實用的課題,例如在動畫或電影的製作中,常常需要從原來的圖案中將特定的人物、物品抽出,並將他們合成在新的背景圖案裡,因此在最近幾年在這個領域中受到相當的重視,許多相關的研究探討合成影像時會遇到的問題和解決的方法。
在本篇論文中,我們提出一個以頻域分析方法為基本架構的演算法,並用之來建立透明物體的光線模型。這個光線模型將根據輸入的影像來計算透明物體的折射及反射特性,使用者可利用此資訊將物體合成到任何新的背景影像。在分析時,作為光源的液晶螢幕被分割成數個大小相同的橫向條狀區域和垂直方向條狀區域,每一個區域代表一個光源的發射位置。在這些位置中我們分別指定一個固定頻率,一個頻率訊息的形成是由多張不同的影像依序變化所產生。我們由數位相機記錄這一連串隨時間變化的影像,然後時域的資訊轉換成頻域資訊。在頻域的資訊中,每個頻率的成分接可以被分離出來,因此可以找出光源的位置和光線衰減度。
本論文的貢獻主要在於提出一個更精準的演算法來忠實呈現物體的折射及反射特性,我們引用在醫學影像的重建投影求解的Kaczmarz方法來求得更精確的光源位置和衰減度,並佐以好的初始值預測計算來避免掉進local minimum。另外,我們使用空間座標轉換的作法來求得合成後影像的背景區域的色彩分佈,這個方法不僅可以減少電腦的計算量而且也可以保持合成後影像的解析度。在實驗的結果裡,我們證明不管由視覺效果或是PSNR的比較,我們的結果均優於之前的研究,實驗中也藉由合成視訊的產生來驗證其對物體移動、旋轉、放大縮小合成能力的有效性。
The paper proposes a new environment matting algorithm to model the appearance of transparent object under different background. The frequency-domain analysis is used as the basis to compute the relationship between the area of foreground object and background image. Meanwhile, the Kaczmarz method is applied to obtain more accurate weight matrix. The compositing quality increases if the iteration number of projection increases, however, the consuming time is proportional to the iteration number. We will show that the proposed algorithm can maintain the quality even the high threshold is set to reduce the iteration.
The experimental results show that our algorithm can effectively improve the quality of compositing picture and has higher PSNR than previous method, either from the visual evaluation or PSNR table. Besides, we also demonstrate the compositing results by applying the computed lighting model to a video sequence with moving, rotating, and scaling the foreground object.
[1] Thomas Porter and Tom Duff. Compositing Digital Images. In Computer Graphics , volume 18, number 3, pages 253-259, July 1984.
[2] Alvy Ray Smith and James F. Blinn. Blue Screen Matting. In SIGGRAPH, volume 30, pages 259–268, 1996.
[3] Douglas E. Zongker, Dawn M. Werner, Brian Curless, and David H. Salesin. Environment matting and compositing. In Proceedings of ACM SIGGRAPH 1999, pages 205–214, 1999.
[4] Yung-Yu Chuang, Douglas E. Zongker, Joel Hindorff, Brian Curless, David H. Salesin, and Richard Szeliski. Environment matting extensions: Towards higher accuracy and real-time capture. In Proceedings of ACM SIGGRAPH 2000, pages 121–130, July 2000.
[5] Wojciech Matusik, Hanspeter Pfister, Remo Ziegler, Addy Ngan, and Leonard McMillan. Acquisition and rendering of transparent and refractive objects. In Thirteenth Eurographics Workshop on Rendering, pages 267–277, 2002.
[6] Wojciech Matusik, Hanspeter Pfister, Addy Ngan, Paul Beardsley, Remo Ziegler, and Leonard McMillan. Image-Based 3D Photography using Opacity Hulls. In SIGGRAPH 2002, pages 427–437, July 2002.
[7] Yonatan Wexler, Andrew W. Fitzgibbon, and Andrew Zisserman. Image-based environment matting. In Proceedings of EuroGraphics Workshop on Rendering 2002, pages 289–299, June 26–28 2002.
[8] Pieter Peers and Philip Dutre. Wavelet environment matting. In Proceedings of Eurographics workshop on Rendering 2003, pages 157–166, 2003.
[9] Jiayuan Zhu and Yee-Hong Yang. Frequency-based Environment Matting. In Proceedings of the 12th Pacific Conference on Computer Graphics and Applications, 2004.
[10] Avinash C. Kak and Malcolm Slaney. Principles of Computerized Tomographic Imaging. IEEE Press, New York, 1988.
[11] K. Tanabe. Projection method for solving a singular system of linear equation and applications. In Numerical Mathematics, volume 17, pages 203-214, 1971.
[12] Mark A. Ruzon and Carlo Tomasi. Alpha Estimation in Natural Images. In IEEE Conference on Computer Vision and Pattern Recognition 2000, Volume 1, pages 18-25, June 2000.
[13] Yung-Yu Chuang, Brian Curless, David Salesin, and Richard Szeliski. A Bayesian Approach to Digital Matting. In Proceedings of CVPR 2001, Volume 2, pages 264-271, 2001.
[14] Yung-Yu CHUANG, Aseem Agarwala, Brian Curless, David H. Salesin, and Richard Szeliski. 2002. Video matting of complex scenes. In Proceedings
of ACM SIGGRAPH 2002, pages 243–248, 2002.
[15] Wojciech Matusik, Hanspeter Pfister, Addy Ngan, Paul Beardsley, Remo Ziegler, and Leonard McMillan. Image-Based 3D Photography using Opacity Hulls. In Proceedings of ACM SIGGRAPH 2002, Volume 21 , pages 427 – 437, July 2002.
[16] Andrew Fitzgibbon, Yonatan Wexler, and Andrew Zisserman. Bayesian Video Matting Using Learnt Image Priors. In International Journal of Computer Vision, Volume 63, pages 141 – 151, July 2005.
[17] Jian Sun, Jiaya Jia, Chi-Keung Tang, and Heung-Yeung Shum. Poisson Matting. In ACM Transactions on Graphics, Volume 23, pages 315 - 321, August 2004.
[18] Richard Szeliski. Image mosaicing for tele-reality applications. In Applications of Computer Vision, pages 44-53, 1994
[19] Richard Szeliski. Video Mosaics for Virtual Environments. In Computer Graphics and Applications, IEEE Volume 16, pages 22-30, March 1996.
[20] Harpreet S. Sawhney. and Rakesh Kumar. True multi-image alignment and its application to mosaicing and lens distortion correction. In IEEE Transactions on Pattern Analysis and Machine Intelligence, Volume 21, pages 235 – 243, March 1999.
[21] Yucel Altunbasak, Russell M. Mersereau, and Andrew J. Patti. A fast parametric motion estimation algorithm with illumination and lens distortion. In IEEE Transactions on Image Processing, Volume 12, pages 395-408, April 2003.
[22] Wonpil Yu. An embedded camera lens distortion correction method for mobile computing applications. In IEEE Transactions on Consumer Electronics, Volume 49, pages 894-901, November 2003.
[23] Luca Lucchese. and Sanjit K. Mitra. Correction of geometric lens distortion through image warping. In Image and Signal Processing and Analysis, Volume 1, pages 516-521, September 2003.
[24] Rafael C. Gonzalez and Richard E. Woods. Digital Image Processing, 2nd edition, Prentice-Hall, Inc., 2002.
[25] Yao Wang, Jorn Ostermann, and Ya-Qin Zhang. Video Processing and Communications. Prentice-Hall, Inc., 2001.
[26] A. V. Oppenheim, R. W. Schafer, and J. R. Buck. Discrete-time Signal Processing, 2nd edition, Prentice-Hall, Inc., 1999.
[27] Chris Wynn, An Introduction to BRDF-Based Lighting, NVIDIA Corporation, 2000.