研究生: |
王人仰 Ren-Yang Wang |
---|---|
論文名稱: |
控制激子在單一發光層的擴散得到高發光效率及高色穩定性之螢光白光有機發光二極體 Efficient, Chromaticity-stable Fluorescent White Organic Light-Emitting Diodes by Controlling Exciton Diffusion in One Single Emitting Layer |
指導教授: |
周卓煇
Jwo-Huei Jou |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 108 |
中文關鍵詞: | 白光有機發光二極體 、高效率 、色穩定性 、螢光 |
外文關鍵詞: | white organic light-emitting diodes, efficient, chromaticity-stable, fluorescent |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
白光有機發光二極體(White organic light-emitting diodes, WOLEDs)在高品質平面顯示器、平面照明、液晶顯示器背光源及光電產業的應用上,具有極大的應用潛力,因而受到極廣泛的重視;在此些應用中,亮度、效率及壽命為首要之考量;WOLEDs之發光層,可用磷光或螢光材料製成;目前,磷光系WOLEDs呈現極高亮度和極佳效率,可適用於未來的照明,但是,在高電流或高亮度需求下,像是在被動式矩陣有機發光二極體(passive matrix organic light-emitting diode)顯示應用時,其效率則將驟減,尚有改善之空間;相對地,螢光WOLEDs具有較長操作壽命而為顯示產業普遍使用,但是,效率卻仍較不足;相較於磷光系,效率更高之螢光WOLEDs,為當前發展的重要課題,尤其在大電流、高亮度之應用需求下。
藉由恰當之元件結構安排,以溶劑預溶混合均勻之主、客體混合物為源蒸鍍,並使用能量轉移效率極佳可發純藍光之主體,我們製成了一系列高效率高色安定性白光甚至純白之螢光二極體;所用主體為1-butyl-9,10-naphthalene-anthracene、紅光染料4-(dicyanomethylene)-2- methyl-6-(julolidin-4-yl-vinyl)-4H-pyran、及綠光染料2,3,6,7-tetrahydro- 1,1,7,7-tetramethyl-1H,5H,11H-10-(2-benzothiazolyl)quinolizino-[9,9a,1gh]coumarin;所搭配的電洞傳輸材料為N,N’-bis-(1-naphthy)-N, N’diphenyl-1,1’-biphenyl-4-4’-diamine,其在此同時呈現了極佳的電子阻擋效果;所用的電子傳輸材料為2-2’-2”-(1,3,5-benzinetriyl)tris(1- phenyl-1-H-benzimidazole),其亦扮演了極佳的電洞阻擋角色;所得的元件結構,使電子及電洞容易注入到發光層中,而且不易離開,致使效率提升;所得摻雜染料散佈均勻之單一發光層,加上前述結構,使電洞-電子易被侷限在主體層中再結合,而呈現高色安定性;所得雙波段白光二極體,效率最高者為7.5 lm/W,其Commission International de L’Eclairage(CIE)色座標為(0.423,0.426);CIE為(0.346, 0.343)之純白元件,其效率為6.5 lm/W;三波段白光元件(0.324, 0.395)之最高效率則為6.7 lm/W;亮度從100 變化到 10,000 cd/m2間,所有元件之光色變化差異皆小於(0.007, 0.006)。
1. C. W. Tang, and S. A. VanSlyke, Appl. Phys. Lette. 1987, 51, 913.
2. J. H. Burroughs, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burn, and A. B. Holmes, Nature 1990, 347, 539.
3. B. W. D’Andrade and S. R. Forrest, Adv. Mater. 2004, 16, 18.
4. B. W. D’Andrade, R. J. Holmes, S. R. Forrest, Adv. Mater. 2004, 16, 624.
5. Commission Internationale de L’eclairage (CIE), Method of measuring and specifying colour rendering properties of light sources, Publication Report No. 13.2, 1974.
6. Commission Internationale de L’eclairage (CIE), Colorimetry, Publication Report No. 15.2, 1986.
7. Lighting Handbook, 8th ed., IESNA, New York 1993.
8. G. Cheng, F. Li, Y. Duan, J. Feng, S. Liu, S. Qiu, D. Lin, Y. Ma, S. T. Lee, Appl. Phys. Lett. 2003, 82, 4224.
9. M. Pope, C. E. Swenberg, Electronic Process in Organic Crystals and Polymers, Second Edition, Oxford University Press, New York, 1999.
10. R. C. Kwong, S. Lamansky, M. E. Thompson, Adv. Mater. 2000, 12, 1134.
11. M. Ikai, S. Tokito, Y. Sakamoto, T. Suzuki, Y. Taga, Appl. Phys. Lett. 2001, 79, 156.
12. F. Nüesch, D. Berner, E. Tutiš, M. Schaer, C. Ma, X. Wang, B. Zhang, L. Zuppiroli, Adv. Funct. Mater. 2005, 15, 323.
13. C. H. Chuen, Y. T. Tao, F. I. Wu, and C. F. Shu, Appl. Phys. Lett. 2004, 85, 4609.
14. A. R. Duggal, J. J. Shiang, C. M. Heller, D. F. Foust, Appl. Phys. Lett. 2002, 80, 3470.
15. B. W. D’Andrade, S. R. Forrest, Adv. Mater. 2004, 16, 1585.
16. A. Bernanose, M. Conet, P. Vouauzx, J. Chem. Phys. 1953, 50, 64.
17. P. Pope, H. P. Kallmann, and P. J. Magnante, Chem. Phys. 1963, 38, 2042.
18. W. Helfrich, W. G. Schneider, Phys. Rev. Lett. 1965, 14, 229.
19. W. Helfrich, W. G. Schneider, J. Chem. Phys. 1966, 44, 2902.
20. D. F. Williams, M. Schadt, Proc. IEEE 1970, 58, 476.
21. P. S. Vincett, W. A. Barlow, R. A. Hann, G. G. Robert, Solid Thin Films 1982, 94, 171.
22. R. H. Patridge, Polymer 1983, 24, 733.
23. S. A. VanSlyke, C. W. Tang, and L. C. Robert, US. Pat. 1988, No. 4,720,432.
24. C. W. Tang, S. A. VanSlyke, and C. H. Chen, J. Appl. Phys. 1989, 65, 3610.
25. R. H. Friend, J. H. Burroughes, and D. D. Bradley, US. Pat. 1993, No. 5,247,190.
26. C. Adachi, S. Tokito, T. Tsutsui, S. Saito, Jpn. J. Appl. Phys. 1988, 27, L713.
27. M. Era, C. Adachi, T. Tsutsui, S. Saito, Chem. Phys. Lett. 1991, 178, 488.
28. J. Kido, M. Kohda, K. Okuyama, K. Nagai, Appl. Phys. Lett. 1992, 61, 761.
29. J. Kido, M. Kimura, K. Nagai, Science 1995, 267, 1332.
30. J. Kido, H. Shionoya, K. Nagai, Appl. Phys. Lett. 1995, 67, 2281.
31. J. Shi and C. W. Tang, Appl. Phys. Lett. 1997, 70, 1665.
32. G. E. Jabbour, B. Kippelen, N. R. Armstrong, and N. Peyghambarian, Appl. Phy. Lett. 1998, 73, 1185.
33. J. Kido, and T. Mizukami, US. Pat. 2000, No. 6,013,384.
34. N. C. Greenham, R. H. Friend, A. R. Brown, D. D. C. Bradley, K. Pichler, P. L. Burns, A. Kraft, and A. B. Holmes, Proc. SPIE 1994, 1910, 84.
35. M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, and S. R. Forrest, Nature 1998, 395,151.
36. C. Adachi, M. A. Baldo, M. E. Thompson, and S. R. Forrest, J. Appl. Phys. 2001, 90,5048.
37. Y. Shao and Y. Yang, Appl. Phy. Lett. 2005, 86, 073510.
38. A. Dodabalapur, Bell Lab., Solid State Com. 1997, 102, 259.
39. S. Miyata, H. S. Nalwa, Organic Electroluminescent Materials and Devices, Gordon and Breach Science Publishers, 1997, Chap 1.
40. K. Sugiyama, D. Yoshimura, T. Miyamae, T. Miyazaki, H. Ishii, Y. Ouchi, K. Seki, J. Appl. Phys. 1998, 83, 4928.
41. T. Förster, Ann. Phys. 1948, 6, 55.
42. D. L. Dexter, J. Chem. Phys. 1953, 21, 836.
43. M. A. Lampert, P. Mark, Current Injection in Solids 1970, New York, Academic Press.
44. S. Miyata, H. S. Nalwa, Organic Electroluminescent Materials and Devices, Gordon and Breach Science Publishers, 1997, Chap 8.
45. S. Miyata, H. S. Nalwa, Organic Electroluminescent Materials and Devices, Gordon and Breach Science Publishers, 1997, Chap 9.
46. J. Yang, J. Shen, J. Appl. Phys. 1998, 84, 2105.
47. Z. Liu, J. Pinto, J. Soaves, E. Pereira, Synth. Metals 2001, 122, 177.
48. K. A. Higginson, X. Zhang, F. Padaimitrakoppulos, Chem. Mater. 1998, 10, 1017.
49. S. A. VanSlyke, C. H. Chen, C. W. Tang, Appl. Phys. Lett. 1996, 69, 2160.
50. G. Sakamoto, C. Adachi, T. Koyama, Y. Taniguchi, C. D. Merritt, H. Murata, Z. H. Kafafi, Appl. Phys. Lett. 1999, 75, 766.
51. C. Giebeler, H. Antoniadis, D. D. C. Bradley, Y. Shirota, J. Appl. Phys. 1999, 85, 608.
52. J. Kido, K. Hongawa, K. Okuyama, and K. Nagai, Appl. Phys. Lett. 1994, 64, 815.
53. L. Do, E. Ham, N. Yamamoto, and M. Fujihira, Mol. Cryst. Liq.Cryst. 1993, 280, 373.
54. C. Hosokawa, H. Higashi, and T. Kusumoto, Appl. Phys. Lett. 62, 1993, 3238.
55. J. Kido, K. Hongawa, K. Okuyama, and K. Nagai, Appl. Phys. Lett. 1993, 63, 2627.
56. J. Kido, K. Hongawa, K. Okuyama, and K. Nagai, Appl. Phys. Lett. 1994, 64, 815.
57. S. A. VanSlyke, C. H. Chen, and C. W. Tang, Appl. Phys. Lett. 1996, 69, 2160.
58. K. Chondroudis and D. B. Mitzi, Appl. Phys. Lett. 2000, 69, 58.
59. C. H. Chen, Chemistry(The Chinese Chem. Soc., Taipei)1996, 54, 125.
60. Y. Shirota, Y. Kuwabara, H. Inada, Appl. Phys. Lett. 1994, 65, 807.
61. C. Adachi, K. Nagai, N. Tamoto, Appl. Phys. Lette. 1995, 66, 2679.
62. Y. Sato, S. Ichinosawa, H. Kanai, IEEE Journal of Selected Topics in Quantum Electronics 1998, 4, 40.
63. Y. Hamada, T. Sano, H. Fujii, Y. Nishio, H. Takahashi, and K.Shibata, Appl. Phys. Lett. 1997, 71, 3338.
64. D. G. Ma, G. Wang, Y. F. Hu, Y. G. Zhang, L. X. Wang, X. B. Jing, and F. S. Wang, Appl. Phys. Lett. 2003, 82, 1296.
65. L. S. Hung, and C. W. Tang, US. Pat. 1997, No. 5,677,572.
66. M. A. Baldo, D. F. Brlen, and S. R. Forrect, US. Pat. 2000, No. 6,097,147.
67. F. Li and H. Tang, Appl. Phy. Lett. 1997, 70,1233.
68. J. Kido, K. Hongawa, K. Okuyama, and K. Nagai, Appl. Phys. Lett. 1994, 64, 815.
69. J. H. Jou, Y. S. Chiu, R. Y. Wang, C. P. Wang, Y. C. Huang, C. S. Lin, C. H. Cheng, C. I. Chao, 2005 International Display Manufacturing Conference and Exhibition, 2005.
70. S. Naka, K. Shinno, and H. Anada, Electron. Trans. IEICE. 1997, 80, 1114.
71. 林瑋哲, 碩士論文, 國立清華大學材料科學與工程研究所, 2004.
72. J. T. Lim, M. J. Lee, N. H. Lee, Y. J. Ahn, C. H. Lee, D. H. Hwang, Curre. Appl. Phys. 2004, 4, 327-330.
73. G. Lei, L. Wang, and Y. Qiu, Appl. Phys. Lett. 2004, 85, 5403.
74. R. H. Jordan, A. Dodabalapur, M. Strukelj, and T. M. Miller, Appl. Phys. Lett. 1996, 68, 1192.
75. S. R. Forrest, R. S. Desphande, and V. Bulovic, Appl. Phys. Lett. 1999, 75, 888.
76. Y. S. Huang, J. H. Jou, W. K. Weng, and J. M. Liu, Appl. Phys. Lett. 2002, 80, 2782.
77. G. Cheng, F. Li, Y. Duan, J. Feng, S. Liu, S. Qiu, D. Lin, Y. Ma, and S. T. Lee, Appl. Phys. Lett. 2003, 82, 4224.
78. Y. F. Zhang, G Cheng, Y. Zhao, J. Y. Hou, and S. Y. Liu, Appl. Phys. Lett. 2005, 86, 011112.
79. J. Kido, Organic Electroluminescence Material and Display, 2001, Chap17.
80. J. Kido, Organic Electroluminescence Material and Display, 2001, Chap23.
81. F. Li, G. Cheng, Y. Zhao, J. Feng, S. Liu, M. Zhang, Y. Ma, and J. Shen, Appl. Phys. Lett. 2003, 83, 4716.
82. G. Li, and J. Shinar, Appl. Phys. Lett. 2003, 83, 5359.
83. S. Tokito, T. Iijima, T. Tsuzuki, and F. Sato, Appl. Phys. Lett. 2003, 83, 2459.
84. G. Cheng, Y. Zhao, Y. Zhang, S. Liu, F. He, H. Zhang, and Y. Ma, Appl. Phys. Lett. 2004, 84, 4457.
85. T. S. Liu, Y. S. Wu, M. T. Lee, H. H. Chen, C. H. Liao, and C. H. Chen, Appl. Phys. Lett. 2004, 85, 4304
86. D. Qin and Y. Tao, Appl. Phys. Lett. 2005, 86, 113507.
87. V. Bulovic, A. Shoustikov, M. A. Baldo, E. Bose, V. G.Kozlov, M. E. Thompson, and S. R. Forrest, Chem. Phys. Lett. 1998, 287, 455.
88. 劉醇炘, 碩士論文, 國立交通大學應用化學研究所, 2002.
89. V. Bulovic, R. Deshpande, M. E. Thompson, and S. R. Forrest, Chem. Phys. Lett. 1999, 308, 317.
90. H. Nakamura, H. Ikeda, H. Kawamura, H. Higashi, H. Tokailin, K. Fukuoka, C. Hosokawa, and T. Kusumoto, SID 1999, 99 Digest 446.
91. E. I. Haskal, Synthetic Metals 1997, 91, 187.