研究生: |
黃獻輝 Hsian-Huei Huang |
---|---|
論文名稱: |
流道幾何形狀對直接甲醇燃料電池陽極端雙相流現象之影響─以H2SO4和NaHCO3化學反應模擬CO2生成 Effects of Channel Geometry on Two-Phase Flow Phenomena at the anode in a micro-DMFC--with CO2 Bubbles Produced by Chemical Reactions of H2SO4 and NaHCO3 |
指導教授: |
潘欽
Chin Pan |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2006 |
畢業學年度: | 95 |
語文別: | 英文 |
論文頁數: | 82 |
中文關鍵詞: | 直接甲醇燃料電池 、雙相流 、漸擴流道 |
外文關鍵詞: | DMFC, two-phase flow, diverging flow channel |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用H2SO4水溶液及NaHCO3水溶液在流道中混合後進行化學反應,生成CO2氣泡,用以模擬直接甲醇燃料電池陽極端的雙相流行為。將不同濃度之H2SO4水溶液及NaHCO3水溶液通入由壓克力製成的蛇形等截面積流道 (SSF)、漸擴流道 (SDSF-2°, SDSF-3°)以探討雙相流現象。
研究結果顯示:流譜的觀察中,三種流道上游的流譜大都為氣泡流,流道下游的流譜大都為袋狀流或是環形流。在工作流體濃度低的實驗條件下,漸擴流道SDSF-2□中較少CO2氣泡產生,其原因可能是在漸擴流道SDSF-2□中流體流動的速度較快,造成工作流體混合效果較差,使化學反應不易發生,氣泡生成較少;在漸擴流道SDSF-3□流動的工作流體速度較慢的影響下,混合效果較佳,有利於化學反應的發生,氣泡生成較多。CO2氣泡在轉角處生成較多,可能是因為流體流經轉角處會產生二次流。三種流道中生成的CO2氣泡,大致上均呈現線性成長的模式。
實驗壓降部分,漸擴流道SDSF-3□中的實驗壓降值較等截面積流道(SSF)及漸擴流道SDSF-2□中的實驗壓降值為低。在不同實驗條件下,可發現壓降皆有一高頻振盪,其頻率約為45Hz,這可能是聲波振盪的表現。
The present study utilizes sulfuric acid (H2SO4) solution and sodium bicarbonate (NaHCO3) solution mixing in the minichannel to produce carbon dioxide (CO2) through chemical reactions to simulate the two-phase flow transportation at the anode side of a DMFC through the following chemical reaction.
Research results shows that the upstream flow pattern in three kinds of flow channel (SSF, SDSF-2□, SDSF-3□) is mostly bubbly flow; the downstream flow pattern is mostly slug flow or annular flow. Few CO2 bubbles are generated in SDSF-2□□Under the condition of low concentration. This could be the fluid velocity in SDSF-2□□□is fast, causing poor mixing of two working solutions On the other hand, more CO2 bubbles are produced in SDSF-3□□due to slower fluid velocity, and the mixing of two working solutions is better. More CO2 bubbles are generated at U-bends. This could be when fluid flow through a U-bend, a secondary flow will take place there. The CO2 bubbles are generated in three kinds of flow channel growing approximately linearly.
The experimental pressure drop part, the pressure drops in SDSF-3□ is lower than those of SSF and SDSF-2□□ All of the two-phase pressure drop data exhibit a small amplitude, high frequency oscillation of about 45Hz.
[1]. M. Crichton, “State of Fear”, p.101-108, 231-234, 293-298, 437-458, 462-464, 497-504, 561-565, 671-682, Yuan-Liou Publishing Co., Ltd, Taiwan, 2005 (in Chinese).
[2]. J.R. Petit, J. Jouzel, D. Raynaud, N.I. Barkov, J.M. Barnola, I. Basile, M. Bender, J. Chappellaz, M. Davis, G. Delaygue, M. Delmotte, V.M. Kotlyakov, M. Legrand, V.Y. Lipenkov, C. Lorius, L. Pepin, C. Ritz, E. Saltman and M. Stievenard, “Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica”, Nature, Vol. 399, pp. 429-436, 1999.
[3]. http://data.giss.nasa.gov/gistemp/graphs/
[4]. Al Gore, “An Inconvenient Truth”, Rodale Inc., 2006.
[5]. Peter Hoffmann, “Tomorrow’s Energy: Hydrogen, Fuel Cells, and the prospects for a Cleaner Planet”, MIT Press, 2001.
[6]. R. Edinger, S. Kaul, “Sustainable Mobility: Renewable Energies for Powering Fuel Cell Vehicles”, Conn Greenwood Publishing Group, 2003.
[7]. S. Giddey, F.T. Ciacchi, S.P.S. Badwal, “Design, assembly and operation of polymer electrolyte membrane fuel cell stacks to 1 kWe capacity”, Journal of Power Sources, Vol. 125, pp. 155-165, 2005.
[8]. K. NISHIDA, T. TAKAGI, S. KINOSHITA, T. TSUJI, “Performance evaluation of multi-stage SOFC and gas turbine combined systems”, in: Proceedings of ASME TURBO EXPO, pp.333-340, 2002.
[9]. G.Q. Lu, C.Y. Wang, T.J. Yen, X. Zhang, “Development and characterization of a silicon-based micro direct methanol fuel cell”, Electrochimica Acta, Vol. 49, pp. 821-828, 2004.
[10]. M. Baldauf, and W. Preidel, “Status of the development of a direct methanol fuel cell”, Journal of Power Sources, Vol. 84, pp. 161-166, 1999.
[11]. A. Heinzel and V.M. Barragán, “A review of the state-of-the-art of the methanol crossover in direct methanol fuel cells”, Journal of Power Sources, Vol. 84, pp. 70-74, 1999.
[12]. S.C Thomas, X. Ren, S. Gottesfeld, and P. Zelenay, “Direct methanol fuel cells: progress in cell performance and cathode research”, Electrochimica Acta, Vol. 47, pp. 3741-3748, 2002.
[13]. K. Sundmacher and K. Scott, “Direct methanol polymer electrolyte fuel cell: analysis of charge and mass transfer in the vapor-liquid-solid system”, Chemical Engineering Science, Vol. 54, pp. 2927-2936, 1999.
[14]. P. Argyropoulos, K. Scott, W.M. Taama, “Carbon dioxide evolution patterns in direct methanol fuel cells”, Electrochimica Acta, Vol. 44, pp. 3575-3584, 1999.
[15]. D.S. Meng, J. Kim, C.J. Kim, “A distributed gas breather for micro direct methanol fuel cell (μ-DMFC)”, in: Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS), pp. 534–537, 2003.
[16]. I.Y. Chen, C.C. Wang, P.S. Huang, B.C. Yang, Y.J. Chang, “Influence of vertical return bend on the two phase flow pattern in a 3-mm minichannel”, in: Proceedings of the First International Conference on Microchannels and Minichannels, pp. 493-498, 2003.
[17]. C.C. Wang, I.Y. Chen, Y.W. Yang, Y.J. Chang, “Two-phase flow pattern in small diameter tubes with the presence of horizontal return bend”, International Journal of Heat and Mass Transfer, Vol. 46, pp. 2975-2981, 2003.
[18]. G.Q. Lu, C.Y. Wang, “Electrochemical and flow characterization of a direct methanol fuel cell”, Journal of Power Sources, Vol. 134, pp. 33-40, 2004.
[19]. T. Bewer, T. Beckmann, H, Dohle, J. Mergel, D. Stolten, “Novel method for investigation of two-phase in liquid feed direct methanol fuel cell using an aqueous H2O2 solution”, Journal of Power Sources, Vol. 125, pp. 1-9, 2004.
[20]. H. Yang, T.S. Zhao, Q. Ye, “Addition of non-reacting gases to the anode flow field of DMFCs leading to improved performance.” Electrochemistry Communications, Vol. 6, pp. 1098-1103, 2004.
[21]. K. Tüber, A. Oedegaard, M. Hermann, C.Hebling, “Investigation of fractal flow-fields in portable proton exchange membrane and direct methanol fuel cells”, Journal of Power sources, Vol. 131, pp. 175-181, 2004.
[22]. H. Yang, T.S. Zhao, Q. Ye, “In situ visualization study of CO2 gas bubble behavior in DMFC anode flow fields”, Journal of Power Sources, Vol. 139, pp.79-90, 2005.
[23]. H. Yang, T.S. Zhao, Q. Ye, “Effect of anode flow field design on the performance of liquid feed direct methanol fuel cells”, Electrochimica Acta, Vol. 50, pp. 3243-3252, 2005.
[24]. J.J. Hwang, F.G. Tseng, C. Pan, “Ethanol-CO2 two-phase flow in diverging and converging microchannels”, International Journal of Multiphase Flow, Vol. 31, pp. 548-570, 2005.
[25]. P. Argyropoulos, K. Scott, W.M. Taama, “Pressure drop modeling for liquid feed direct methanol fuel cells Part I. Model development, Part II. Model based parametric analysis”, Chemical Engineering Journal, Vol. 78, pp. 29-41, 2000.
[26]. I.Y. Chen, K.S. Yang, Y.J. Chang, C.C. Wang, “Two-phase drop of air-water and R-410A in small horizontal tubes”, International Journal of Multiphase Flow, Vol. 27, pp. 1293-1299, 2001.
[27]. I.Y. Chen, Y. K. Lai, C.C. Wang, “Frictional performance of U-type wavy tubes”, Journal of Fluids Engineering, Vol. 125, pp. 880-886, 2003.
[28]. C.C. Wang, I.Y. Chen, H.J. Shyu, “Frictional performance of R-22 and R-410A inside a 5.0 mm wavy diameter tube”, International Journal of Heat and Mass Transfer, Vol. 46, pp. 755-760, 2003.
[29]. C.O. Popieil, J. Wojtkowiak, “Friction factor in U-Type undulated pipe”, Journal of Fluids Engineering, Vol. 122, pp. 260-263, 2000.
[30]. I.Y. Chen, C.C. Wang, S.Y. Lin, “Measurements and correlations of frictional single-phase and two-phase drops of R-410A flow in small U-type return bends”, International Journal of Heat and Mass Transfer, Vol. 47, pp. 2241-2249, 2004.
[31]. D.F. Geary, “Return bend pressure drop in refrigeration systems”, ASHRAE Trans. Vol. 81 (1), pp. 250-264, 1975.
[32]. H. Yang, T.S. Zhao, Q. Ye, “Pressure drop behavior in the anode flow field of liquid feed direct methanol fuel cells”, Journal of Power Sources, Vol. 142, pp. 117-124, 2005.
[33]. B.R. Fu, F.G. Tseng C. Pan, “Two-phase flow pattern in converging or diverging microchannels with CO2 bubbles produced by chemical reactions”, Proc. Third Int. Conf. on Microchannels and Minichannels, June 13-15, 2005, Toronto, Ontario, Canada.
[34]. C. Pan, “Heat transfer of boiling and two-phase flow”, Junjei Books Co., Taipei, 2001 (in Chinese).
[35]. D.R. Lide et al., CRC Handbook of Chemistry and Physics, 83rd edition, CRC Press,2002.
[36]. J. Kendall and K.P. Monroe, “The viscosity of liquids. Ⅱ. The viscosity-composition curve for ideal liquid mixtures”, Journal of the American Chemical Society, Vol. 39, pp. 1787-1802,1917.
[37]. F.M. White, “Fluid Mechanics”, third edition, p. 340, McGraw-Hill Book Co., New York, 1979.
[38]. B.R. Munson, D. F. Young, T.H. Okiishi, “Fundamentals of Fluid Mechanics”, fourth edition, p. 489, John Wiley & Sons, Inc., 2002.
[39]. J.P. Hartnett and M. Kostic, “Heat transfer to Newtonian and non-Newtonian fluids in rectangular ducts”, Advances in Heat Transfer, Vol. 19, pp. 247-356,1989.