研究生: |
葉秉勳 Bing-Syun Yeh |
---|---|
論文名稱: |
電漿熔射噴塗法製備固態氧化物燃料電池之La1-XSrXMnO3陰極材料 La1-XSrXMnO3 as the cathode material for solid oxide fuel cells by plasma spray |
指導教授: |
李志浩
Chih-Hao Lee 楊村農 Cun-Nong Yang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2004 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 93 |
中文關鍵詞: | 鑭鍶錳氧 、鈣鈦礦結構 、電漿熔射噴塗 、固態氧化物燃料電池 、陰極 |
外文關鍵詞: | LSM, perovskite, plasma spray, SOFC, cathode |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
固態氧化物燃料電池(SOFC)可以將化學能直接轉換成電能,並具有很高的轉換效能。而燃料電池陰極材料的性質,例如化學元素的組成、晶粒大小、微結構、空洞的比例、導電性和導離子性,都對電池的輸出效能有很大的影響。La1-XSrXMnO3 (LSM)是陰極經常應用的材料,有許多的研究著重在製作SOFC的薄膜,由此來降低燃料電池中歐姆阻抗與極化現象,而本製程則是應用電漿熔射噴塗的方式來製造LSM,與其他傳統的製程方式如燒結法相比較,有許多的優點,包括了有較強的機械鍵結、比較低廉的花費,以及高的沉積速率縮短製程時間。
樣品的各種結構特性,藉由X光粉末繞射(XRD)、X光吸收近邊緣光譜結構(XANES)、掃描式電子顯微鏡(SEM)、X光螢光分析法(XRF)、感應耦合電漿原子發射光譜儀(ICP-AES)、電子探針微區分析儀(EPMA),以及四點探針量測法(four point probe)進行分析,不同的分析方法,協助了解較適合製程參數。從XRD的分析中,可以在所有的樣品中觀察到鈣鈦礦(perovskite)結構,而且,XANES顯示所其原子是屬於體心堆積的方式。LSM的晶粒大小,在SEM量測中大約是4 ~ 10 μm。XRF、ICP-AES和EPMA用以找出化合物的化學元素比例。最後,以四點探針來測試導電率。
鈣鈦礦結構的LSM,可以很成功的以8.8 kW之電漿熔射噴塗火炬製備合成,而應用水溶液的原料先驅物是能夠降低合成功率的主要原因,其沉積薄膜的速率大約是每分鐘1 μm,與傳統的製程方式相比較,更是快了許多。不過,電漿熔射噴塗可會製造出許多的非晶相結構,這應該是導因於電漿火焰的不穩定,以及進料速率無法維持一定,而且,如果與火焰之間的距離不夠接近,沉積產率會有過低的情況發生。綜合上述所有的實驗結果,使用低功率的電漿火炬,以電漿熔射噴塗法的方式,合成、沉積La1-XSrXMnO3的薄膜,確實是具可行性的製程技術。
Solid oxide fuel cell (SOFC) convert chemical energy directly into electrical energy with high energy conversion efficiency. The cathode material properties, such as chemical composition, grain size, microstructure, concentration of porosity, electric and ion conductivity are of great influence of the output performance. La1-XSrXMnO3 (LSM) is common application materials in the cathode. A number of fabrication approaches have been investigated to make thin-file SOFC to minimize ohmic and polarization losses in the fuel cells. Plasma spray coating was used to fabricate LSM in present work. To compare with other processes such as sintering process, it has some advantages including the strong mechanical bonding, lower cost and high deposition rate taking relatively short production time.
The structure of sample was characterized by X-ray powder diffraction (XRD), X-ray absorption near edge structure (XANES), scanning electron microscope (SEM), X-ray fluorescence spectroscopy (XRF), inductively coupled plasma-atomic emission spectrometer (ICP-AES), electron probe microanalyzer (EPMA) and the method of four point probe. Different kinds of analysis help us to understand the suitable parameters used in the process. From the analysis of the XRD, the perovskite structure was observed in all samples and the XANES showed the atoms pile with body centered lattice. The grain size of LSM was about 4 ~10 μm from the measure of SEM. XRF, ICP-AES and EPMA were used to find out the ratio of composition for each element. Finally, the method of four point probe tested the resistivity.
It is successful to fabricate the perovskite structure of LSM by 8.8 kW plasma spray gun. The liquid precursor is the essential point to decrease the required power. The rate of coating thickness is about 1 μm/min, it is faster than the other traditional manufacture. However, plasma spray coating may fabricate impure crystal because of unstable flame and various ratio of input solution. Also, the coating yield on the substrate is small if the distance to the flame is not close enough. To combine all of the experimental results above, it is feasible to produce La1-XSrXMnO3 thin film by plasma spray coating with low power gun.
[1] W. R. Grove, Philos. Mag., 14, 127 (1938)
[2] L. Mond, C. Langerm Proc. R. London, 46, 296 (1889)
[3] W.W. Jacques, Harper”s Magazine, 94, 296 (1895)
[4] A. M. Adams, F. T. Bacon, R. G. H. Watson, in W. Mitchell, Jr.(ed.), Academic Press, New York, 129 (1963)
[5] P. Zegers, J. Power Source., 29, 133 (1990)
[6] K. Kinoshita, “Electrochemical Oxygen Techenology”, Wiley , New York, Chap.2 & Chap 4 (1992)
[7] J. H. Hirschenhofer, D. B. Stauffer, R. R. Engleman, and M. G. Klett, “Fuel Cell Handbook”, 4th edition, U.S. Department of Energy, 5-7 (1998)
[8] N. Robertson and J. N. Michaels, J. Electrochem. Soc., 137, 129 (1990)
[9] P. J. Gellings, H. J. A. Koopmans and A. J. Burggraaf, Appl. Catal., 39, 1 (1998)
[10] D. Y. Wang and A. S. Nowick, J. Electrochem. Soc., 126, 1155 (1979)
[11] D. Y. Wang and A. S. Nowick, J. Electrochem. Soc., 128, 55 (1980)
[12] T. H. Estell and S. N. Flengas, J. Electrochem Soc., 118, 1890 (1971)
[13] O. Yamamoto, Y. Takeda, R. Kanno and M. Noda, Solid State Ionics, 22, 241 (1987)
[14] J. Mizusaki, K. Amano, S. Yamauchi and K. Fueki, Solid State Ionics, 22, 323 (1987)
[15] Y. Takeda, R. Kanno, M. Noda and O. Yamamoto, J. Electrochem. Soc., 134, 2656 (1987)
[16] A. Hammouche, E. Siebert, A. Hammou and M. Kleitz, J. Electrochem. Soc., 138, 1212 (1991)
[17] N. Q. Minh, J. Am. Ceram., 76, 563 (1993)
[18] E. Siebert, Electrochemica Acta, 39, 1621 (1994)
[19] B. C. H. Steel, J. Power. Source., 49, 1 (1994)
[20] J. Divisek, L. G. J. Harrt, P. H. Happels, T. Lennarts, Wallener, U. Stimming and K. Wippermann, J. Power Source., 49, 257 (1994)
[21] T. H. Etsell and S. N. Flengas, Chem. Rev., 70, 339 (1970)
[22] 黃明賢, “陶瓷燃料電池SOFC”, 能源季刊, 第二十六卷, 第四期, 117
[23] R. A. Lemons, J. Power Source., 29, 251 (1990)
[24] H. Yahiro, Y. Eguchi, K. Eguchi and H. Arai. J. Appl. Electrochem. 18, 527 (1988)
[25] R. A. Swalin, “Thermodynamics of Solids”, 2ed edition, John Wiley, New York, 116 (1972)
[26] N. Q. Minh, C. E. Mcpheeters and J. E. Brule, “Monolithic Solid Oxide Fuel Cell Technology Development Phase IA”, Final Report, (1989)
[27] H. Y. Tu, Y. Takeda, N. Imanishi, O. Yamamoto, Solid State Ionics, 100, 283 (1997)
[28] M. Godickemeier, K. Sasaki, L. J. Gauckler, I. Reiss, Solid State Ionics, 86-88, 691 (1996)
[29] T. Kawada, K. Masuda, J. Suzuki, A. Kaimai, K. Kawamura, Y. Nigara, Solid State Ionics, 121, 271 (1999)
[30] S. B. Adler, Solid State Ionics, 111, 125 (1998)
[31] R. H. E. van Doom, A. J. Burggraaf, Solid State Ionics, 128, 65 (2000)
[32] Y. Teraoka, T. Nobunaga, K. Okamoto, N. Miura, N. Yamazoe, Solid State Ionics, 48, 207 (1991)
[33] Y. Takeda, H. Ueno, N. Imanishi, O. Yamamoto, N. Sammes, M. B. Phillipps, Solid State Ionics, 86-88, 1187 (1996)
[34] M. B. Phillipps, N. M. Sammes, O. Yamamoto, Solid State Ionics, 123, 131 (1999)
[35] L. W. Tai, M. N. Nasrallah, H. U. Anderson, D. M. Sparlin, S. R. Seglin, Solid State Ionics, 76, 259 (1995)
[36] L. W. Tai, M. N. Nasrallah, H. U. Anderson, D. M. Sparlin, S. R. Seglin, Solid State Ionics, 76, 273 (1995)
[37] D. Waller, J. A. Lane, J. A. Kilner, B. C. H. Steele, Solid State Ionics, 86-88, 767 (1996)
[38] G. Ch. Kostogloudis, Ch. Ftikos, Solid State Ionics, 126, 1 (1999)
[39] R. A. Desouza, “Ionic transport in acceptor doped perovskites”, University of London”, Thesis, (1996)
[40] A. V. Berenov, J. L. MacManus-Driscoll, J. A. Kilner, Solid State Ionics, 122, 41 (1999)
[41] T. Tsai, S. A. Barnett, Proceedings of the Fifth International Symposium on Solid Oxide Fuel Cell, Aachen, Germany, 18, 368 (1997)
[42] Y. Takeda, Y. Sakaki, T. Ichikawa, N. Imanishi, O. Yamamoto, M. Mori, N. Mori, T. Abe, Solid State Ionics, 72, 257 (1994)
[43] C. Brugnoni, U. Ducati, M. Scagliotti, Solid State Ionics, 76, 177 (1995)
[44] Y. Sakaki, Y. Takeda, A. Kato, N. Imanishi, O. Yamamoto, M. Hattori, M. Iio, Y. Esaki, Solid State Ionics, 118, 187 (1999)
[45] S. T. Aruna, M. Muthuraman, K. C. Patil, Solid State Ionics, 120, 275 (1999)
[46] T. L. Wen, H. Tu, Z. Xu, O. Yamamoto, Solid State Ionics, 121, 25 (1999)
[47] G. Ch. Kostogloudis, Ch. Ftikos, J. Eur. Ceram. Soc., 19, 497 (1999)
[48] G. Ch. Kostogloudis, N. Vasilakos, Ch. Ftikos, J. Eur. Ceram. Soc., 17, 1513 (1997)
[49] H. R. Rim, S. K. Jeung, E. Jung, J. S. Lee, Mater. Chem. Phys., 52, 54 (1998)
[50] T. Ishihara, T. Kudo,H. Matsuda, Y. Takita, J. Electrochem. Soc., 142, 1591 (1995)
[51] N. Maffei, A. K. Kuriakose, J. Power Source., 75, 162 (1998)
[52] B. C. H. Steele, Solid State Ionics, 86-88, 1223 (1996)
[53] B. C. H. Steele, Solid State Ionics, 75, 157 (1995)
[54] D. Lybye, F. W. Poulsen, M. Mogensen, Solid State Ionics, 128, 91 (2000)
[55] M. Hrovat, S. Bernik, D. Kuscer, J. Hole, D. Kolar, J. Mater. Sci. Lett., 17, 1957 (1998)
[56] P. S. Anderson, F. M. B. Marques, D. C. Sinclair, A. R. West, Br. Ceram. Proc., 60, 59 (1998)
[57] R. Chiba, F. Yoshimura, Y. Sakurai, Solid State Ionics, 124, 281 (1999)
[58] J. Hole, D. Kuscer, M. Hrovat, S. Bernik, D. Kolar, Solid State Ionics, 95, 259 (1997)
[59] S. Charojrochkul, K. L. Choy, B. C. H. Steele, Solid State Ionics, 121, 107 (1999)
[60] T. Hibino, S. Wang, S. Kakimoto, M. Sano, Solid State Ionics, 127, 89 (2000)
[61] S. Srilomsah et al, Proc. of 1st Int”1. Sysip on Solid Oxide Fuel Cells, 129 (1989)
[62] H. Herman and S. Sampath, “Thermal Spray Coating”, Chapman and Hall ,1996
[63] R. Binda, Eur. Phys. J. B., 37,321 (2003)
[64] J. M. D. Coey et al, Adv Phys.,48,167 (1999)
[65] J. Hemberger et al, Phys. Rev. B, 66,094410 (2002)
[66] A. Urushibrara , et al, Phys. Rev. B, 51, 14103 (1995)
[67] R. Mahendiran et al, Phys. Rev. B, 53, 3348 ( 1996)
[68] Takanori Mori et al, J. Alloys Comp., 308, 87 (2000)
[69] P. M. Woodward et al., Chem. Mater., 10, 3652 (1998)
[70] Takanori Mori et al, J. Alloys Comp., 313, L1 (2000)
[71] T. Negas et al, Solid State Chem., 1, 409 (1970)
[72] T. Ohtani , K. Kuroda, K. Matsugami, D. Katoh, J. Eur. Ceram. Soc., 20, 2721 (2000)
[73] N. Abdelmoula, K. Guidara,1 A. Cheikh}Rouhou, and E. Dhahri, J. Solid State Chem., 151,139 (2000)
[74] D. Prabhakaran*, A.I. Coldea, A.T. Boothroyd, S.J. Blundell, J. Crystal Growth, 237-239, 806 (2002)
[75] Tetsuo Shimura, Toshimasa Hayashi, Yoshiyuki Inaguma, and Mitsuru Itoh, J. Solid State Chemistry, 124, 250 (1996)
[76] 黃璟瓔,清華大學化學工程學系碩士論文,2001
[77] 鐘國濱,清華大學電化學工程研究所博士論文,2001
[78] 黃泳勝,清華大學化學工程學系碩士論文,2000
[79] 許國祥,清華大學化學工程學系碩士論文,1996
[80] 駱世平,逢甲大學材料科學學系碩士論文,1989
[81] 許樹恩、吳泰伯,X光繞射原理與材料結構分析,中國材料科學學會,1992
[82] 汪健民主編,材料分析,中國材料科學學會,1998