簡易檢索 / 詳目顯示

研究生: 王詩緯
Shih-Wei Wang
論文名稱: CMOS-MEMS電容式生醫感測晶片
CMOS-MEMS Capacitive-Type Biosensor
指導教授: 盧向成
Shiang-Cheng Lu
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 58
中文關鍵詞: 電容式生醫感測表面化學修飾CMOS-MEMS交叉電極懸臂樑
外文關鍵詞: capacitive-type biosensor, surface chemical modification, interdigitated electrode, cantilever
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究目的在於製作新型奈米生醫感測元件,而目標將設定在以生物感測器的製作平台整合微機電技術設計並製造新穎、具高性能的微質量或表面電場造成電容變化之感測器,並結合CMOS積體電路製程完成整合型生醫感測器晶片。
    本論文將介紹以交叉電極型式微結構之CMOS MEMS 生醫感測器的設計概念。設計以TSMC 0.35 μm 2P4M 標準製程製作整合性晶片,論文中主要可以分成交叉電極感測結構、CMOS感測電路及表面修飾理論。而檢測生物分子的一種有希望的方法是黏著分子於二氧化矽表面上,生物分子黏著導致表面壓力引起懸臂樑彎曲或表面電場改變,造成交叉電極電容變化。希望藉由直接電路整合降低寄生電容所帶來的訊號衰減及電路噪聲大。當抗體/抗原結合時因表面電場的改變而有電容的變化或感測抗體/抗原結合時的位移變化而造成之電容變化。而感測為電容變化的大小,期望達到微小化且能精確量測電容的新型感測器。而電容式生醫感測器直接量測交叉電極型式結構之電容,並由電路輸出端得到電壓訊號,便可得知其電容變化量。我們成功量測到不同濃度的金奈米粒子所造成的電容變化。
    本研究論文很重要的意義在於整合生醫感測符合標準製程,使其有機會量產應用於市場。


    Abstract 中文摘要 致謝 目錄 圖目錄 表目錄 第一章 序論 1-1 微機電系統 1-2 生醫感測器簡介 1-3 研究動機 1-4 文獻回顧 第二章 CMOS MEMS 電容式生醫感測器系統架構 2-1 電容式生醫感測器之運作機制 2-1-1 係利用表面電場變化之感測器 2-1-2 係利用表面壓力引起懸臂樑彎曲之感測器 2-2 感測器設計與模擬 2-2-1 係利用表面電場改變之感測器結構設計 2-2-2 係利用表面壓力引起懸臂樑彎曲之感測器結構設計 2-2-3 蛇狀懸臂樑的彈性係數公式推導 2-2-4 模擬懸臂樑電容值 2-3 電路設計與模擬 2-3-1 源極追隨器(Source Follower) 2-3-2 感測電路 2-4 以金奈米粒子表面修飾之原理 2-4-1 表面化學改質原理 2-4-2 免疫球蛋白(IgG)簡介 2-4-3 蛋白質的固定方式 2-4-4 金奈米粒子的特性 2-5 晶片Layout圖 第三章 電容式生醫感測器之後製程 3-1 CMOS Standard Process的後製程 3-1-1 濕蝕刻金屬 3-1-2 感應耦合電漿離子蝕刻 (Inductively Coupled Plasma Reactive Ion Etching, ICP RIE) 3-1-3 活性離子蝕刻(RIE) 3-2 表面化學修飾步驟 3-2-1 表面化學改質 3-2-2 金奈米粒子或磁珠之修飾 第四章 實驗與量測結果之分析 4-1 電容式生醫感測器之封裝 4-2 電路量測 4-3 實驗量測方法與步驟 4-4 實驗量測結果 4-4-1 使用無標記Anti-Mouse IgG 的金奈米粒子( SIGMA G1652 ) 4-4-2 使用標記Anti-Mouse IgG 的金奈米粒子 ( SIGMA G7652 ) 第五章 討論與結論

    [1]J. M. Bustillo, G. K. Fedder, C. T.-C. Nguyen, and R. T. Howe, ”Process technology for the modular integration of CMOS and polysilicon microstructions,” Microsyst.Technol., vol. 1, pp.30-41, 1994.
    [2]T. A. Core, W. K. Tsang, and S. J. Sherman,“Fabrication technology for an integrated surface-micromachined sensor,” Solid State Technol., vol. 36, no, pp. 39-40, 42, 44, 46-47, Oct. 1993.
    [3]R. Berger et al., “Surface stress in the self-assembly of alkanethiols on gold,” Science, vol. 276, pp. 2021-2024, 1997.
    [4]J. Fritz et al., “Translating biomolecular recognition into nanomechanics,” Science, vol. 228, pp. 316-318, 2000.
    [5]K. Takahashi and T. Matsuo, “Integration of multi-microelectrode and interface circuits by silicon planar and three-dimensional fabrication technology,” Sensors and Actuators , vol. 5, pp. 89-99, 1984.
    [6]K. Najafi et al., “A high-yield IC-compatible multichannel recording array,” IEEE. Trans. Electron. Devices, vol. 32, pp. 1206-11, 1985.
    [7]J. Ji and K. Wise, “An implantable CMOS circuit interface for multiplexed microelectrode recording array,” IEEE J. Solid-State Circuits, vol. 27, pp. 433-43, 1992.
    [8]R. Berger et al., “Surface stress in the self-assembly of alkanethiols on gold,” Science, vol. 276, pp. 2021-2024, 1997.
    [9]Y.-S. Kim et al., “PZT cantilever array integrated with piezoresistor sensor for high speed parallel operation of AFM,” Sensors and Actuators A, vol. 103, pp. 122-129, 2003.
    [10]S.C. Minne et al., “Parallel atomic force microscopy using cantilevers with integrated piezoresistive sensors and integrated piezoelectric actuators,“ Appl. Phys. Lett., vol. 67, pp. 3918-3920, 1995.
    [11]S.R. Manalis et al., “Atomic force microscopy for high speed imaging using cantilever with integrated actuator and sensor,” Appl. Phys. Lett., vol. 68, pp.871-873, 1996.
    [12]T. Akiyama et al., “Integrated atomic force microscopy array probe with metal-oxide-semiconductor field effect transistor stress sensor, thermal bimorph actuator, and on-chip complementary metal-oxide-semiconductor electronics,” J. Vac. Sci. Technol. B, vol. 18, no. 6, pp. 2669-2675, 2000.
    [13]C.-H. Chen et al., “A wireless bioMEMS sensor for C-reactive protein detection based on nanomechanics,“ Proc. ISSCC, pp. 562-564, 2006.
    [14]G. Shekhawat et al., “MOSFET-embedded microcantilevers for measuring deflection in biomolecular sensors,” Science, vol. 311, pp. 1592-1595, 2006.
    [15]J. Geen et al., “Single-chip surface micromachined integrated gyroscope with 50 deg/h Allan deviation,” IEEE J. Solid-State Circuits, vol. 37, no. 12, pp. 1860-1866, 2002.
    [16]J. Li et al., “A high-density conduction-based micro-DNA identification array fabricated with a CMOS compatible process,” IEEE Trans. on Electron Devices, vol. 50, no. 10, pp. 2165-2170, 2003.
    [17]M. Schienle et al., “A fully electronic DNA sensor with 128 positions and in-pixel A/D conversion,” IEEE J. Solid-State Circuits, vol. 39, no. 12, pp. 2438-2445, 2004
    [18]M. D. Rubianes and G. A. Rivas, Anal Chim Acta, 440, pp. 99–108, 2001.
    [19]J. Wang and A. Walcarius, J. Electroanal. Chem. 407, pp. 183–187, 1996.
    [20]Y. F. Tu and H. Y. Chen, Biosens. Bioelectron. 17, pp. 19–24, 2002.
    [21]R. Aguilar, M. M. D´avila, M. P. Elizalde, J. Mattusch, and R. Wennrich, Electrochim. Acta 49, pp. 851–859, 2004.
    [22]吳耀庭、黃曉鳳、溫俊祥., “電漿表面處理在生醫材料上之應用,” 工業材料雜誌 212期, pp. 90–94, 93年8月
    [23]Wide, D. “Immunoassay Handbook, ”, nature publishing group, 2001.
    [24]Dequaire, M.;Degrand, C;Linoges, B. Anal. Chem. 2000 , 72, 5521

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE