簡易檢索 / 詳目顯示

研究生: 莊智鈞
Chuang, Chih-Chun
論文名稱: 使用精確合成漣波磁滯控制機制的降壓轉換器
A Buck Converter Using Accurate Synthetic Ripple Hysteresis Control Scheme
指導教授: 周懷樸
Chou, Huai-Pu
口試委員: 廖聰明
吳紹懋
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2011
畢業學年度: 100
語文別: 中文
論文頁數: 61
中文關鍵詞: 降壓轉換器遲滯控制切換雜訊抑制電流模式控制
外文關鍵詞: Buck Converter, Hysteresis Control, Switching Noise Rejection, Current Mode Control
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一個使用磁滯電流控制模式的直流對直流降壓型轉換器。合成漣波被提出用來偵測電感電壓並產生一個適合遲滯控制使用的三角波。本論文提出之感測電路具有低通濾波器特性和局部回饋可以降低切換雜訊的影響。因為固定的電感電壓使合成漣波具有固定的上升及下降斜率,確保在不同的負載條件下能保持固定的切換頻率。誤差放大器被用來補償直流導通電阻所產生的誤差項,全電路結果指出合成漣波精確度在不同的負載條件及±10%的直流導通電阻誤差範圍皆能保有99%以上的精確度;電壓操作範圍設計在2.7V~4.4V;輸出電壓回復時間為24微秒;最大轉換效率為89%;低雜訊設計適用於以鋰離子做為電池電源供應的可攜式產品。


    This thesis presents a dc-dc buck converter using hysteresis current control mode. A synthetic ripple voltage is proposed to sense the voltage across the inductor and to generate a saw tooth waveform for hysteresis band control. The proposed sensing circuit acts like a low-pass filter and has a local feedback loop to reduce the switching noise. The switching frequency in different load conditions is fixed because the fixed inductor voltage provide constant rising and falling slope of synthetic ripple. The error of the dc term of DCR multiply iL is compensated by an error amplifier to prevent saturation. Full chip simulation results of different load conditions and plus-minus a 10% error of DCR indicate that the synthetic ripple has accuracy about 99%. The range of the operation voltage of the proposed design is from 2.7 to 4.4V; the output voltage recovery time is 24μs under load current conditions between 100mA and 300mA; the maximum conversion efficiency is 89%; the low noise design is particularly suitable for portable device with a Li-ion battery power supply.

    第一章 緒論 1 1.1 穩壓器分類 2 1.1.1 線性穩壓器 2 1.1.2 電荷幫浦穩壓器 3 1.1.3 切換式穩壓器 4 1.2 研究動機與目的 5 1.3 論文架構 6 第二章 文獻回顧 7 2.1 遲滯電流控制穩壓器小訊號模型 7 2.2 電流感測電路 9 2.2.1 感測電阻(Sense Resistors) 9 2.2.2 金氧半場效電晶體導通電阻 (MOSFET RDS(on)) 10 2.2.3 感測電晶體(SenseFET) 11 2.3 切換雜訊(Switching Noise) 13 2.4 適用於遲滯電流控制的電流感測技術 14 2.4.1 減少突波的電流感測電路 14 2.4.2 合成漣波控制 15 2.5 切換式穩壓器之重要規格 17 2.5.1 轉換效率 17 2.5.2 暫態響應 19 2.5.3 負載調節率與線性調節率 20 2.5.4 輸出電壓漣波 21 2.6 設計目標(Design Target)及電容和電感的選擇 21 第三章 電路架構原理與設計 23 3.1 設計概念 23 3.2 系統架構 23 3.3 電流感測迴路 25 3.4 小訊號模型 26 第四章 電路實現與模擬分析 31 4.1 參考電壓源 31 4.2 誤差放大器 34 4.3 遲滯比較器 36 4.4 漣波合成器 37 4.5 補償器 39 4.6 固定遲滯窗口電路 41 4.7 緩起動電路 42 4.8 驅動級電路 43 4.8.1 盲時控制電路 43 4.8.2 數位緩衝器 43 4.9 全電路模擬 45 4.9.1 遲滯漣波訊號模擬結果 45 4.9.2 負載穩壓的模擬結果 47 4.9.3 線性穩壓的模擬結果 48 4.9.4 溫度環境變化的模擬結果 48 4.9.5 轉換效率 49 4.9.6 切換頻率 50 4.9.7 模擬結果規格 51 第五章 電路製作與量測 53 5.1 佈局考量 53 5.2 量測規劃 54 5.3 量測結果 55 第六章 結論與建議 57 6.1 結論 57 6.2 建議 57 參考文獻 59

    1.“Power Management Guide 2011,” Texas Instruments Incorporated, 2011.
    2. P. Hazucha, T. Karnik, B.A. Bloechel, and C. Parsons, “Area-Efficient Linear Regulator with Ultra-Fast Load Regulation,” IEEE Journal of Solid-State Circuits, vol. 40, no. 4, pp. 930-940, April 2005.
    3. P. Favrat, P. Deval, and M.J. Declercq, “A High-efficiency CMOS Voltage Doubler”, IEEE J. Solid-State Circuit, vol. 33, no. 3, pp. 410-416, Mar. 1998.
    4. Robert W. Erickson and Dragan Maksimovic, Fundamentals of Power Electronics, 2nd ed., Norwell, MA: Kluwer Academic Publisher, 2001.
    5. R. Redl and G. Reizik, “Switched Noise Filter for the Buck Converter Using the Output Ripple as the PWM Ramp,” in Proc. IEEE APEC’05, 2005, pp. 918-924.
    6. J. H. Park and B. H. Cho, ”Small Signal Modeling of Hysteretic Current Mode Control Using the PWM Switch Model,” IEEE COMPEL, pp. 225-230, July 2006.
    7. X. Duan and A. Q. Huang, “Current-mode Variable-frequency Control Architecture for High-current Low-voltage DC-DC Converters,” IEEE Trans. Power Electron., vol. 21, no. 4, pp. 1133–1137, Jul. 2006.
    8. R. P. Singh and A. M. Khambadkone, “Giant Magneto Resistive (GMR) Effect Based Current Sensing Technique for Low Voltage/High Current Voltage Regulator Modules,” IEEE Trans. on Power Electronics, vol. 23, no. 2, pp. 1420-1425, Mar. 2008.
    9. R. Lenk, “Application bulletin AB-20: optimum current-sensing techniques in CPU converters,” Fairchild Semiconductor Application Notes, 1999.
    10. Cheung Fai Lee and Philip K. T. Mok, “A Monolithic Current-Mode CMOS DC–DC Converter with On-Chip Current-Sensing Technique”, IEEE J. Solid-State Circuits, vol. 39, no. 1, pp. 3-14, Jan. 2004.
    11. H. Deng, X. Duan, N. Sun, Y. Ma, A. Q. Huang, and D. Y. Chen, “Monolithically integrated boost converter based on 0.5‐μm CMOS process,” IEEE Trans. Power Electron., vol. 20, no. 3, pp. 628– 638, May 2005.
    12. J.-J. Chen, F.-C. Yang and, C.-C. Chen, “A New Monolithic Fast-Response Buck Converter Using Spike-Reduction Current-Sensing Circuits,” IEEE Trans. Industrial Electron., vol. 55, no. 3, pp. 1101–1111, Mar. 2008.
    13. K.D.T. Ngo, S. K. Mishra, and M. Walters, “Dynamic Characterization of the Synthetic Ripple Modulator in a Tightly Regulated Distributed Power Application,” IEEE Trans. of Industrial Electron., vol. 56, no. 4, pp. 1164-1173, Apr. 2009.
    14. Qahouq, J.A.A., Abdel-Rahman, O., Huang, L., and Batarseh, I., “On Load Adaptive Control of Voltage Regulators for Power Managed Loads: Control Schemes to Improve Converter Efficiency and Performance”, IEEE Trans. Power Electron., vol. 22, pp. 1806–1819, Sep. 2007
    15. Doug Mattingly, “Designing Stable Compensation Networks for Single Phase Voltage Mode Buck Regulators”, Intersil, Technical Brief, Dec. 2003
    16. Ka Nang Leung and Philip K. T. Mok, “A Sub-1-V 15-ppm/ ̊C CMOS Bandgap Voltage Reference without Requiring Low Threshold Voltage Device Low Threshold Voltage Device,” IEEE J. Solid-State Circuits, vol. 37, no. 4, pp. 526–530, Apr. 2002.
    17. Philip E. Allen and Douglas R. Holberg, “CMOS Analog Circuit Design,” New York Oxford University Press, 2010.
    18. Behzad Razavi, “Design of Analog CMOS Integrated Circuits,” McGraw-Hill Companies Inc., 2001.
    19. Weste, Neil H. E. and Harris, “David CMOS VLSI Design: A Circuits and Systems Perspective,” Addison-Wesley, 2004.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE