簡易檢索 / 詳目顯示

研究生: 陳慶瑋
Chen, Ching-Wei
論文名稱: A WOSA Filter Bank Spectral Detector and Multicarrier Multiplexing for Cognitive Radios
應用於感知無線電之加權疊加平均濾波器頻譜偵測器與多載波傳輸
指導教授: 黃柏鈞
Huang, Po-Chiun
口試委員: 馬席彬
吳仁銘
楊家驤
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 80
中文關鍵詞: Cognitive RadiosFilter BankSpectrum sensing
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 感知無線電 (Cognitive Radios) 是一中被視為最有前途發展的無線通訊和邁向軟體無線電 (Software Define Radios) 的方式。 感知無線電的平臺建立可自由重新調整參數的無線收發機上,它可以自動適應外在環境和根據使用者需求調整其通信參數。越來越多的無線應用產品被開發,因此對頻譜使用的機會越高以及高資料傳輸率的需求也迅速增長。因為在有限的頻譜資源缺下和低落的頻譜利用率促使我們重新檢使既有的頻譜分配政策。頻譜池的概念就是允許公眾使用者使用共同的頻譜而這些頻譜原本授權給特定的使用者。一般使用者在授權使用者的允許下可以去使用這些頻帶。
    頻譜偵測是感知無線電的關鍵技術之一。雖然有很多方法已經被提出來,但是許多方法需要很多觀察數量或是有高計算複雜性並不適合硬體實現。這使得我們提出窗型函數濾波器組平均加權的重疊的頻譜分析發法(WOSA filter bank),並且基於本地最強大的測試 (LMPT)。我們提出的方法可以提高頻譜的有效自由度(effective degree of freedom )。 在我們的提出的方法中,頻譜解析度取決於快速傅立葉轉換 (FFT) 的點數,因此,頻譜解析度是具有可調的特性。當 SNR = -5 dB 而且假警報 (probability of false alarm) = 0.1 的情況下, 我們提出的偵測器有高於0.9的偵測率比一班的能量偵測器還要高出30% 。
    多載波通信是為實現感知無線電和下一代移動通信的另一個關鍵在於其優異的干擾抑制及頻譜使用效率。傳統上,使用者間如果有頻率偏移的現象,正交分頻多工(OFDM)的方法會導致鄰近的載波受到嚴重干擾,因此,OFDM需要在各使用者間進行完美同步。而在衰落通道下,OFDM 要求額外的循環字首用來對抗到通道衰減,這將會進一步降低頻譜使用效率。因此,我們將提出更好的解決方案基於濾波器組多載波通信系統,而濾波器組多載波通信系統的收發器硬體可以結合我們的頻譜偵測系統已降低硬體成本。
    我們提出的架構經過下線驗證,使用 TSMC 90 nm 製程。定點演算法的偵測率也超過0.9, 在偵測每單位頻寬所消耗的能量只有0.331 J/MHz 大約是其他類似晶片的10倍。我們也將進一步探討多載波通訊收發機如何有效的與既有的頻譜偵測機做整合


    1 Introduction 1.1 Introduction to Cognitive Radios (CRs). . . . . . . . 1 1.2 Motivation . . . . . . . . . . . . . .. . . . . . . . 3 1.3 System Features and Contributions . . . . . . . . . . 4 1.4 Thesis Organization . . . . . . . . . . . . . . . . . 6 2 Multicarrier Systems and Cognitive Radio Technology 2.1 Spectrum Sharing and Software-Defined Radio (SDR) . . 7 2.1.1 Method of Spectrum Sharing . . . . . . . . . . . . 7 2.1.2 Software-Defined Radio . . . . . . . . . . . . . . 9 2.2 Multicarrier Systems for Cognitive Radios. . . . . . 10 2.2.1 Orthogonal Frequency Division Multiplexing (OFDM) 10 2.2.2 Filter Bank Multicarrier (FBMC) . . . . . . . .. . 11 2.3 Physical Layer Spectrum Sensing . . . . . . . . .. . 12 2.3.1 Energy Detection . . . . . . . . . . . . . . . . . 12 2.3.2 Cyclostationarity Detection . . . . . . . . . . . 14 2.3.3 Matched-filter Detection . . . . . . . . . . . . . 15 3 WOSA Filter Bank with EDF-Based Spectral Detector Nonparametric Spectral Estimator . . . . . . . . . . . . 19 3.1.1 WOSA Spectrum Estimation . . . . . . . . . . . . . 19 3.1.2 Filter Bank Spectrum Estimation . . . . . . . . . 21 3.2 Nonparametric Spectral Estimator 3.3 Filter Bank Multicarrier System . . . . . . . . . . 29 3.3.1 Extended FFT . . . . . . . . . . . . . . . . . . . 29 3.3.2 Polyphase Implementation of FFT . . . . . . . .. . 31 3.3.3 Offset Quadrature amplitude modulation (OQAM) . . 34 4 System Design 4.1 Performance and Complexity Analysis . . . . . . . . 39 4.2 Probability of Detection and Threshold Determination 39 4.2.2 Noise Uncertainty . . . . . . . . . . . . . . .. . 41 4.2.3 Computational Complexity . . . . . . . . . . . . . 42 4.3 Simulation Results and Discussions . . . . . . . . . 42 4.3.1 Wideband Sensing - Subband (Subcarrier) . . . . . .42 EDF WOSA Filter Bank Spectrum Estimator . . . . . . . . . . 4.4 Further Integration with FMBC Transceiver . .. . . . 45 5 Hardware Design 5.1 Hardware Architecture for Proposed EDF WOSA Filter Bank Spectrum Sensing Processor . . . . . . . . . . . . . . . 51 Architecture Design of Fast Fourier Transform . . . . . 55 5.2.1 Fast Fourier Transform Algorithm . . . . . . . . . 55 5.2.2 Fast Fourier Transform Architecture . . . . . . . 57 5.3 Word-Length Determination . . . . . . . . . . . . . 60 5.4 Sensing Time Evaluation . .. . . . . . . . . . . . . 62 5.5 ASIC Implementation . . . .. . . . . . . . . . . . . 64 5.5.1 Design for Test (DfT) Insertion . . . . . . . . . 64 5.5.2 Automatic Placement and Routing (APR) . . . . . . 65 5.5.3 Post-Layout Simulation Results . . . . . . . . . . 67 5.5.4 Chip Summaries and Measurement Results . . . . . . 68 6 Future Work and Conclusions

    [1] FCC, “Spectrum policy task force,” Tech. Rep. ET Docket, no. 02-135, Nov. 2002.
    [2] J. Zander, L. Rasmussen, K. W. Sung, P. Mahonen, M. Petrova, R. Jantti, and
    J. Kronander, “On the scalability of cognitive radio: assessing the commercial
    viability of secondary spectrum access,” IEEE Transactions on Wireless Commu-
    nications, vol. 20, no. 2, pp. 28–36, Apr. 2013.
    [3] J. Mitola, “Cognitive radio for flexible mobile multimedia communications,” in
    IEEE International Workshop on Mobile Multimedia Communications, San Diego,
    CA, USA, Nov. 1999, pp. 3–10.
    [4] H. Sun, A. Nallanathan, C.-X. Wang, and Y. Chen, “Wideband spectrum sensing
    for cognitive radio networks: a survey,” IEEE Transactions on Wireless Commu-
    nications, vol. 20, no. 2, pp. 74–81, Apr. 2013.
    [5] B. Farhang-Boroujeny, “OFDM versus filter bank multicarrier,” IEEE Signal Pro-
    cessing Magazine, vol. 28, no. 3, pp. 92–112, May 2011.
    [6] K. Sithamparanathan and A. Giorgetti, Cognitive Radio Techniques: Spectrum
    Sensing Interference Mitigation, and Localization.
    Norwood, MA, USA: Artech
    House, Sept. 2012.
    [7] B. H. Juang, G. Y. Li, and M. Jun, “Signal processing in cognitive radio,” Proceed-
    ings of the IEEE, vol. 97, pp. 805–823, May 2009.
    [8] S. M. Kay, Fundamentals of Statistical Signal Processing: Detection Theory. Upper
    Saddle River, NJ, USA: Prentice-Hall PTR, Feb. 1998.
    [9] R. Tandra and A. Sahai, “SNR walls for signal detection,” IEEE Journal of Selected
    Topics in Signal Processing (J-STSP), vol. 2, no. 1, pp. 4–17, Feb. 2008.
    [10] S. Haykin, “Cognitive radio:Brain-empowered wireless communications,” IEEE
    Journal of Selected Areas in Communications (J-JSAC), vol. 23, no. 3, pp. 201–205,
    Feb. 2005.
    [11] P. D. Welch, “The use of FFT for the estimation of power spectra: A method
    based on time averaging over short modified periodograms,” IEEE Transactions on
    Audio and Electroacoustics, vol. 15, pp. 70–73, Jun. 1967.
    [12] J.-M. Lin, H.-P. Ma, and D. Cabric, “A reliable adaptive multitaper spectral de-
    tector in wideband strong interference environments,” in IEEE Global Telecommu-
    nications Conference (GLOBECOM), Miami, FL, USA, Dec. 2010, pp. 1–6.
    [13] M.-L. Ku and J.-C. Lin, Cognitive Radio and Interference Management Technology
    and Strategy. Hershey, PA, USA: IGI Global, Aug. 2013.
    [14] A. Fragkiadakis, E. Tragos, and I. Askoxylakis, “A survey on security threats and
    detection techniques in cognitive radio networks,” IEEE Communications Surveys
    and Tutorials, vol. 15, no. 1, pp. 428–445, Feb. 2013.
    [15] FCC, “First report and order,” in Tech. Rep. ET Docket, Washington, D.C., USA,
    Feb. 2002.
    [16] Z. Honggang, Z. Xiaofei, K. Y. Yazdandoost, and I. Chlamtac, “Multiple signal
    waveforms adaptation in cognitive ultra-wideband radio evolution,” IEEE Journal
    of Selected Areas in Communications (J-JSAC), vol. 24, no. 4, pp. 878–884, Apr.
    2006.
    [17] R. Yang, Z. Zhou, L. Zhang, and C. Yu, “Detection and avoidance scheme for
    direct-sequence ultra-wideband system: a step towards cognitive radio,” IET Com-
    munications, vol. 2, no. 8, pp. 1043–1050, Sept. 2008.
    [18] F. C. B. F. Muller, A. Klautau, and C. R. C. M. da Silva, “Performance analysis of
    a multiband OFDM UWB system in the presence of narrowband interference,” in
    IEEE Global Telecommunications Conference (GLOBECOM), Honolulu, HI, USA,
    Nov. 2009, pp. 1–5.
    [19] FCC, “Facilitating opportunities for flexible, efficient, and reliable spectrum use em-
    ploying cognitive radio technologies,” in Notice of Proposed Rule Making (NPRM)
    FCC Docket No. 03-322, Washington, D.C., USA, Dec. 2003.
    [20] P. Amini, R. Kempter, R. R. Chen, L. Lin, and B. Farhang-Boroujeny, “Filter bank
    multitone: A physical layer candidate for cognitive radios,” in Software Defined
    Radio Technical Conference, Orange County, CA, USA, Feb. 2005, pp. 14–18.
    [21] G. Cherubini, E. Eleftheriou, S. Oker, and J. Cioffi, “Filter bank modulation tech-
    niques for very high speed digital subscriber lines,” IEEE Communications Maga-
    zine, vol. 38, no. 5, pp. 98–104, May 2000.
    [22] B. Farhang-Boroujeny, “Multicarrier modulation with blind detection capability us-
    ing cosine modulated filter banks,” IEEE Transactions on Communications, vol. 51,
    no. 12, pp. 2057–2070, Dec. 2003.
    [23] M. Bellanger. (2010, Jan.) FBMC physical layer: a primer. [Online]. Available:
    http://www.ict-phydyas.org
    [24] K. Kalimuthu and R. Kumar, “A study analysis of cooperative spectrum sens-
    ing in cognitive radio networks,” International Conference on Communication and
    Electronics System Design (ICCESD), pp. 876 026–876 026–7, Jan. 2013.
    [25] S. L. Waleed Ejaz, Najam ul Hasan and H. S. Kim, “I3S: intelligent spectrum sens-
    ing scheme for cognitive radio networks,” EURASIP Journal on Wireless Commu-
    nications and Networking, Feb. 2013.
    [26] R. Tandra and A. Sahai, “Fundamental limits on detection in low SNR under
    noise uncertainty,” in IEEE International Conference on Wireless Communications,
    Networking and Mobile Computing, vol. 1, Maui, HI, USA, June 2005, pp. 464–469.
    [27] K. Jitvanichphaibool, Y. C. Liang, and Y. H. Zeng, “Method for spectrum sensing
    and communication device,” Patent US 20 130 045 703, Feb., 2013.
    [28] E. A. K. Cohen and A. T. Walden, “A statistical study of temporally smoothed
    wavelet coherence,” IEEE Journal of Selected Topics in Signal Processing (J-
    STSP), vol. 58, no. 6, pp. 2964–2973, June 2010.
    [29] G. C. Carter, “Coherence and time delay estimation,” Proceedings of the IEEE,
    vol. 75, no. 2, pp. 236–255, Feb. 1987.
    [30] M. S. Bartlett, “Smoothing periodograms from time series with continuous spec-
    tra,” Nature, vol. 161, pp. 686–687, May 1948.
    [31] D. B. Percival and A. T. Walden, Spectral Analysis for Physical Applications. Lon-
    don,U.K.: Cambridge University Press, June 1993.
    [32] D. J. Thomson, “Spectrum estimation and harmonic analysis,” Proceedings of the
    IEEE, vol. 20, pp. 1055–1096, Sept. 1982.
    [33] B. Farhang-Boroujeny, “Filter bank spectrum sensing for cognitive radios,” IEEE
    Transactions on Signal Processing, vol. 56, no. 5, pp. 1801–1811, May 2008.
    [34] B. Farhang Boroujeny, Adaptive Filters: Theory and Applications, 1st ed.
    New
    York, NY, USA: John Wiley & Sons, Inc., June 1998.
    [35] S. Haykin, D. J. Thomson, and J. H. Reed, “Spectrum sensing for cognitive radio,”
    Proceedings of the IEEE, vol. 97, pp. 849–877, May 2009.
    [36] P. Vaidyanathan, Multirate systems and filter banks, 1st ed.
    NJ, USA: A Simon
    & Schuster Company, Oct. 1993.
    [37] S. W. Smith et al., The scientist and engineer’s guide to digital signal processing,
    1st ed. 1st Street. Paramount, CA, USA: California Technical Pub., Oct. 1997.
    [38] J. Antoni and J. Schoukens, “Optimal settings for measuring frequency response
    functions with weighted overlapped segment averaging,” IEEE Transactions on
    Instrumentation and Measurement, vol. 58, no. 9, pp. 3276–3287, Sept. 2009.
    [39] J. Schoukens, Y. Rolain, and R. Pintelon, “Analysis of windowing/leakage effects in
    frequency response function measurements,” Automatica, vol. 42, no. 1, pp. 27–38,
    Jan. 2006.
    [40] B. Chen, T. Liu, F. Shu, and J. Wang, “On performance comparison of wideband
    multiple primary user detection methods in cognitive radios,” in IEEE International
    Conference on Wireless Communications,Networking and Mobile Computing, Bei-
    jing, China, Sept. 2009, pp. 1–4.
    [41] T. H. Yu, S. Rodriguez-Parera, S. Markovic, and D. Cabric, “Cognitive radio wide-
    band spectrum sensing using multitap windowing and power detection with thresh-
    old adaptation,” in IEEE International Conference on Communications (ICC),
    Cape Town, South Africa, May 2010, pp. 1–6.
    [42] T. S. Ferguson, A Course in Large Sample Theory, 1st ed. London, UK: Chapman
    and Hall, July 1996.
    [43] D. J. Thomson, “Jackknifing multitaper spectrum estimates,” IEEE Signal Pro-
    cessing Magazine, vol. 24, no. 4, pp. 20–30, July 2007.
    [44] M. Lopez-Benitez and F. Casadevall, “Signal uncertainty in spectrum sensing for
    cognitive radio,” IEEE Transactions on Communications, vol. 61, no. 4, pp. 1231–
    1241, Apr. 2013.
    [45] R. Tandra and A. Sahai, “Snr walls for signal detection,” IEEE Journal of Selected
    Topics in Signal Processing, vol. 2, no. 1, pp. 4–17, 2008.
    [46] IEEE P802.22/D2.08. Draft standard for wireless regional area networks part 22:
    Cognitive wireless RAN medium access control (MAC) and physical layer (PHY)
    specifications: Policies and procedures for operation in the TV bands., IEEE Std.
    802.22, May 2009.
    [47] H. Stone, “R66-50 An Algorithm for the Machine Calculation of Complex Fourier
    Series,” IEEE Transactions on Electronic Computers, vol. EC-15, no. 4, pp. 680
    –681, Aug. 1966.
    [48] C. P. Fan, M. S. Lee, and G. A. Su, “A Low Multiplier and Multiplication Costs
    256-Point FFT Implementation with Simplified Radix-24 SDF Architecture,” in
    IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), Singapore,
    Dec. 2006, pp. 1935 –1938.
    [49] Q. Lu, X. Wang, and J. Niu, “A Low-Power Variable-Length FFT Processor Base
    on Radix-24 Algorithm,” in Asia Pacific Conference on Postgraduate Research in
    Microelectronics and Electronics (PrimeAsia), Shanghai, China, Jan. 2009, pp. 129
    –132.
    [50] H. Kim and K. Shin, “In-Band Spectrum Sensing in IEEE 802.22 WRANs for
    Incumbent Protection,” IEEE Transactions on Mobile Computing, vol. 9, no. 12,
    pp. 1766 –1779, Dec. 2010.
    [51] T.-H. Yu, O. Sekkat, S. Rodriguez-Parera, D. Markovic, and D. Cabric, “A wide-
    band spectrum-sensing processor with adaptive detection threshold and sensing
    time,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 58,
    no. 11, pp. 2765–2775, Nov. 2011.
    [52] T.-H. Yu, C.-H. Yang, D. Cabric, and D. Markovic, “A 7.4-mw 200-ms/s wideband
    spectrum sensing digital baseband processor for cognitive radios,” IEEE Journal of
    Solid-State Circuits (JSSC), vol. 47, no. 9, pp. 2235–2245, Sept. 2012.
    [53] R. Clegg, S. Isam, I. Kanaras, and I. Darwazeh, “A practical system for improved
    efficiency in frequency division multiplexed wireless networks,” IET Communica-
    tions, vol. 6, no. 4, pp. 449–457, Mar. 2012.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE