研究生: |
蕭稟璇 Hsiao, Ping-Hsuan |
---|---|
論文名稱: |
利用咖啡酸苯乙酯CAPE作為LNCaP 104-R1復發前列腺癌細胞株的治療藥物 Using Caffeic Acid Phenethyl Ester as a Therapeutic Agent for Suppression of Castration-Resistent LNCaP 104-R1 Prostate Cancer Cell Line |
指導教授: |
褚志斌
Chuu, Chih-Pin 汪宏達 Wang, Horng-Dar |
口試委員: |
張中和
Chung-Ho Chang 劉俊揚 Jun-Yang Liou |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 生物科技研究所 Biotechnology |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 英文 |
論文頁數: | 64 |
中文關鍵詞: | 咖啡酸苯乙酯 、前列腺癌 、細胞週期 |
外文關鍵詞: | caffeic acid phenethyl ester, prostate cancer, cell cycle |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
咖啡酸苯乙酯 (caffeic acid phenethyl ester, CAPE)是一種從蜂膠中萃取出的生物活性成分。本實驗室先前研究指出,不論是細胞實驗或是動物實驗,CAPE處理均能抑制男性賀爾蒙依賴型LNCaP 104-S 前列腺癌細胞生長。其分子機轉是透過抑制Akt與c-Myc的訊息傳遞路徑,因而導致細胞週期停滯在G1階段。目前轉移性前列腺癌最主要的治療方法是賀爾蒙療法 (Androgen ablation therapy),但是大多數接受賀爾蒙療法的前列腺癌患者一至三年後,最終進展復發成非賀爾蒙依賴型前列腺癌 (CRPC),復發後患者平均存活時間約一至兩年。目前仍然缺乏有效的治療方法,所以極需發展出新的治療方法。
LNCaP癌細胞株是從轉移到淋巴結的人類前列腺癌細胞中所產生。將男性賀爾蒙依賴型LNAaP 104-S癌細胞持續培養在缺乏男性賀爾蒙的環境下,能獲得非男性賀爾蒙依賴型的 LNCaP 104-R1 癌細胞株, LNCaP 104-R1癌細胞能模擬非賀爾蒙依賴型前列腺病患的情況。
我們發現CAPE處理能使LNCaP 104-R1癌細胞的細胞週期停滯在G1階段,進而抑制癌細胞增生,並能抑制裸鼠腫瘤生長。Micro-Western Array (MWA) 是種高通量西方點墨微陣列,能夠同時檢測6~15種樣品的96~384支抗體表現。藉由高通量西方點墨微陣列,我們發現CAPE處理在LNCaP 104-R1癌細胞中只是輕微抑制Akt訊息傳遞,卻能顯著抑制Skp2表現量。這也許可以解釋為何LNCaP 104-R1癌細胞相較於LNAaP 104-S癌細胞對於CAPE具有較大的耐受能力。Skp2過量表現能夠阻斷CAPE的抑制效果。CAPE與PI3K抑制劑-LY294002及B-cl2抑制劑ABT-737共同處理下都具有加乘效果。我們的發現指出CAPE具有潛力能做為非賀爾蒙依賴型前列腺癌的輔助治療。
Caffeic acid phenethyl ester (CAPE) is a bioactive component derived from honeybee hive propolis. We previously showed that treatment with CAPE suppresses growth of androgen-dependent AR-positive LNCaP 104-S cells both in vitro and in vivo via inhibition of Akt and c-Myc signaling, thus causes G1 cell cycle arrest. Androgen ablation therapy is the primary treatment for metastatic prostate cancer (PCa). However, a majority of PCa patients receiving the androgen ablation therapy will ultimately develop recurrent castration-resistant prostate cancer (CRPC) within 1-3 years after treatment with a median overall survival time of 1-2 years after relapse. There is currently no effective therapy and new therapeutic targets are needed. The LNCaP cancer cell line was established from a human lymph node metastatic lesion of prostatic adenocarcinoma. We have established AR-rich androgen-independent LNCaP 104-R1 cells derived from parental androgen-dependent LNCaP 104-S cells under androgen depleted condition. LNCaP 104-R1 cells mimic CRPC in patients. CAPE treatment caused G1 cell cycle arrest in 104-R1 cells and thus suppressed cell proliferation and tumor growth in nude mice. Micro-Western Array (MWA) is an antibody-based modified reverse phase array, which allows detecting protein expression level or phosphorylation status change of 96-384 different antibodies in 6-15 samples simultaneously. Using MWA platform, we found that CAPE reduced Akt-related proteins expression slightly, but decrease Skp2 abundance significantly, which may explain its larger resistance to CAPE treatment than 104-S cells. Overexpression of Skp2 blocked suppressive effect of CAPE. Co-treatment of CAPE with PI3K inhibitor LY294002 or Bcl-2 inhibitor ABT-737 both showed synergistic suppressive effects. Our finding suggested that CAPE treatment is a potential therapy for CRPC.
1. Gregg, J.L., et al., Analysis of gene expression in prostate cancer epithelial and interstitial stromal cells using laser capture microdissection. BMC Cancer, 2010. 10: p. 165.
2. Huggins, C. and C.V. Hodges, Studies on prostatic cancer: I. The effect of castration, of estrogen and of androgen injection on serum phosphatases in metastatic carcinoma of the prostate. 1941. J Urol, 2002. 168(1): p. 9-12.
3. Wu, X., et al., Stromal cell heterogeneity in fibroblast growth factor-mediated stromal-epithelial cell cross-talk in premalignant prostate tumors. Cancer Res, 2003. 63(16): p. 4936-44.
4. Chung, L.W., et al., New targets for therapy in prostate cancer: modulation of stromal-epithelial interactions. Urology, 2003. 62(5 Suppl 1): p. 44-54.
5. Lopaczynski, W., A.M. Hruszkewycz, and R. Lieberman, Preprostatectomy: A clinical model to study stromal-epithelial interactions. Urology, 2001. 57(4 Suppl 1): p. 194-9.
6. Sung, S.Y. and L.W. Chung, Prostate tumor-stroma interaction: molecular mechanisms and opportunities for therapeutic targeting. Differentiation, 2002. 70(9-10): p. 506-21.
7. Gronberg, H., Prostate cancer epidemiology. Lancet, 2003. 361(9360): p. 859-64.
8. Lichtenstein, P., et al., Environmental and heritable factors in the causation of cancer--analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med, 2000. 343(2): p. 78-85.
9. Lindzey, J., et al., Molecular mechanisms of androgen action. Vitam Horm, 1994. 49: p. 383-432.
10. Liang, T. and S. Liao, Inhibition of steroid 5 alpha-reductase by specific aliphatic unsaturated fatty acids. Biochem J, 1992. 285 ( Pt 2): p. 557-62.
11. Hellerstedt, B.A. and K.J. Pienta, The current state of hormonal therapy for prostate cancer. CA Cancer J Clin, 2002. 52(3): p. 154-79.
12. Chuu, C.P., et al., Androgen suppresses proliferation of castration-resistant LNCaP 104-R2 prostate cancer cells through androgen receptor, Skp2, and c-Myc. Cancer Sci, 2011. 102(11): p. 2022-8.
13. Keating, N.L., et al., Diabetes and cardiovascular disease during androgen deprivation therapy: observational study of veterans with prostate cancer. J Natl Cancer Inst, 2010. 102(1): p. 39-46.
14. Keating, N.L., A.J. O'Malley, and M.R. Smith, Diabetes and cardiovascular disease during androgen deprivation therapy for prostate cancer. J Clin Oncol, 2006. 24(27): p. 4448-56.
15. Saigal, C.S., et al., Androgen deprivation therapy increases cardiovascular morbidity in men with prostate cancer. Cancer, 2007. 110(7): p. 1493-500.
16. Seruga, B. and I.F. Tannock, Intermittent androgen blockade should be regarded as standard therapy in prostate cancer. Nat Clin Pract Oncol, 2008. 5(10): p. 574-6.
17. Gilligan, T. and P.W. Kantoff, Chemotherapy for prostate cancer. Urology, 2002. 60(3 Suppl 1): p. 94-100; discussion 100.
18. Horoszewicz, J.S., et al., The LNCaP cell line--a new model for studies on human prostatic carcinoma. Prog Clin Biol Res, 1980. 37: p. 115-32.
19. Lin, H.P., et al., Difference in Protein Expression Profile and Chemotherapy Drugs Response of Different Progression Stages of LNCaP Sublines and Other Human Prostate Cancer Cells. PLoS One, 2013. 8(12): p. e82625.
20. Chuu, C.P., et al., Androgen causes growth suppression and reversion of androgen-independent prostate cancer xenografts to an androgen-stimulated phenotype in athymic mice. Cancer Res, 2005. 65(6): p. 2082-4.
21. Chuu, C.P., et al., Inhibition of tumor growth and progression of LNCaP prostate cancer cells in athymic mice by androgen and liver X receptor agonist. Cancer Res, 2006. 66(13): p. 6482-6.
22. Kokontis, J., et al., Increased androgen receptor activity and altered c-myc expression in prostate cancer cells after long-term androgen deprivation. Cancer Res, 1994. 54(6): p. 1566-73.
23. Kokontis, J.M., N. Hay, and S. Liao, Progression of LNCaP prostate tumor cells during androgen deprivation: hormone-independent growth, repression of proliferation by androgen, and role for p27Kip1 in androgen-induced cell cycle arrest. Mol Endocrinol, 1998. 12(7): p. 941-53.
24. Kokontis, J.M., et al., Role of androgen receptor in the progression of human prostate tumor cells to androgen independence and insensitivity. Prostate, 2005. 65(4): p. 287-98.
25. Umekita, Y., et al., Human prostate tumor growth in athymic mice: inhibition by androgens and stimulation by finasteride. Proc Natl Acad Sci U S A, 1996. 93(21): p. 11802-7.
26. Xie, B.X., et al., Analysis of differentially expressed genes in LNCaP prostate cancer progression model. J Androl, 2011. 32(2): p. 170-82.
27. Thalmann, G.N., et al., LNCaP progression model of human prostate cancer: androgen-independence and osseous metastasis. Prostate, 2000. 44(2): p. 91-103 Jul 1;44(2).
28. Wu, H.C., et al., Derivation of androgen-independent human LNCaP prostatic cancer cell sublines: role of bone stromal cells. Int J Cancer, 1994. 57(3): p. 406-12.
29. Natarajan, K., et al., Caffeic acid phenethyl ester is a potent and specific inhibitor of activation of nuclear transcription factor NF-kappa B. Proc Natl Acad Sci U S A, 1996. 93(17): p. 9090-5.
30. Lin, H.P., S.S. Jiang, and C.P. Chuu, Caffeic acid phenethyl ester causes p21 induction, Akt signaling reduction, and growth inhibition in PC-3 human prostate cancer cells. PLoS One, 2012. 7(2): p. e31286.
31. Chiao, C., et al., Apoptosis and altered redox state induced by caffeic acid phenethyl ester (CAPE) in transformed rat fibroblast cells. Cancer Res, 1995. 55(16): p. 3576-83.
32. Liao, H.F., et al., Inhibitory effect of caffeic acid phenethyl ester on angiogenesis, tumor invasion, and metastasis. J Agric Food Chem, 2003. 51(27): p. 7907-12.
33. Kuo, Y.Y., et al., Caffeic Acid Phenethyl Ester Suppresses Proliferation and Survival of TW2.6 Human Oral Cancer Cells via Inhibition of Akt Signaling. Int J Mol Sci, 2013. 14(5): p. 8801-17.
34. Chuu, C.P., et al., Caffeic acid phenethyl ester suppresses the proliferation of human prostate cancer cells through inhibition of p70S6K and Akt signaling networks. Cancer Prev Res (Phila), 2012. 5(5): p. 788-97.
35. Lin, H.P., et al., Caffeic Acid phenethyl ester as a potential treatment for advanced prostate cancer targeting akt signaling. Int J Mol Sci, 2013. 14(3): p. 5264-83.
36. He, Y.J., et al., Inhibitory effect of caffeic acid phenethyl ester on the growth of SW480 colorectal tumor cells involves beta-catenin associated signaling pathway down-regulation. World J Gastroenterol, 2006. 12(31): p. 4981-5.
37. Kuo, H.C., et al., Inhibitory effect of caffeic acid phenethyl ester on the growth of C6 glioma cells in vitro and in vivo. Cancer Lett, 2006. 234(2): p. 199-208.
38. Nagaoka, T., et al., Inhibitory effects of caffeic acid phenethyl ester analogues on experimental lung metastasis of murine colon 26-L5 carcinoma cells. Biol Pharm Bull, 2003. 26(5): p. 638-41.
39. Vlahos, C.J., et al., A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002). J Biol Chem, 1994. 269(7): p. 5241-8.
40. Fresno Vara, J.A., et al., PI3K/Akt signalling pathway and cancer. Cancer Treat Rev, 2004. 30(2): p. 193-204.
41. Sarker, D., et al., Targeting the PI3K/AKT pathway for the treatment of prostate cancer. Clin Cancer Res, 2009. 15(15): p. 4799-805.
42. Kreisberg, J.I., et al., Phosphorylation of Akt (Ser473) is an excellent predictor of poor clinical outcome in prostate cancer. Cancer Res, 2004. 64(15): p. 5232-6.
43. Chan, C.H., et al., Regulation of Skp2 expression and activity and its role in cancer progression. ScientificWorldJournal, 2010. 10: p. 1001-15.
44. Cooper, G.M., The Eukaryotic Cell Cycle., in The Cell: A Molecular Approach. 2nd edition. 2000, Sinauer Associates: Sunderland (MA).
45. Wilkinson, M.G. and J.B. Millar, Control of the eukaryotic cell cycle by MAP kinase signaling pathways. FASEB J, 2000. 14(14): p. 2147-57.
46. Nakayama, K.I. and K. Nakayama, Regulation of the cell cycle by SCF-type ubiquitin ligases. Semin Cell Dev Biol, 2005. 16(3): p. 323-33.
47. Sutterluty, H., et al., p45SKP2 promotes p27Kip1 degradation and induces S phase in quiescent cells. Nat Cell Biol, 1999. 1(4): p. 207-14.
48. Xiong, Y., et al., p21 is a universal inhibitor of cyclin kinases. Nature, 1993. 366(6456): p. 701-4.
49. Shirane, M., et al., Down-regulation of p27(Kip1) by two mechanisms, ubiquitin-mediated degradation and proteolytic processing. J Biol Chem, 1999. 274(20): p. 13886-93.
50. Perez-Roger, I., et al., Cyclins D1 and D2 mediate myc-induced proliferation via sequestration of p27(Kip1) and p21(Cip1). EMBO J, 1999. 18(19): p. 5310-20.
51. Gu, Y., J. Rosenblatt, and D.O. Morgan, Cell cycle regulation of CDK2 activity by phosphorylation of Thr160 and Tyr15. EMBO J, 1992. 11(11): p. 3995-4005.
52. Bartova, I., J. Koca, and M. Otyepka, Regulatory phosphorylation of cyclin-dependent kinase 2: insights from molecular dynamics simulations. J Mol Model, 2008. 14(8): p. 761-8.
53. Yuan, F., et al., A novel role of proteasomal beta1 subunit in tumorigenesis. Biosci Rep, 2013. 33(4).
54. Wakino, S., et al., Peroxisome proliferator-activated receptor gamma ligands inhibit retinoblastoma phosphorylation and G1--> S transition in vascular smooth muscle cells. J Biol Chem, 2000. 275(29): p. 22435-41.
55. Nevins, J.R., et al., Role of the Rb/E2F pathway in cell growth control. J Cell Physiol, 1997. 173(2): p. 233-6.
56. Weinberg, R.A., E2F and cell proliferation: a world turned upside down. Cell, 1996. 85(4): p. 457-9.
57. Dowen, S.E., et al., Overexpression of Skp2 in carcinoma of the cervix does not correlate inversely with p27 expression. Int J Cancer, 2003. 105(3): p. 326-30.
58. Gstaiger, M., et al., Skp2 is oncogenic and overexpressed in human cancers. Proc Natl Acad Sci U S A, 2001. 98(9): p. 5043-8.
59. Carrano, A.C. and M. Pagano, Role of the F-box protein Skp2 in adhesion-dependent cell cycle progression. J Cell Biol, 2001. 153(7): p. 1381-90.
60. Dowen, S.E., et al., Amplification of chromosome 5p correlates with increased expression of Skp2 in HPV-immortalized keratinocytes. Oncogene, 2003. 22(16): p. 2531-40.
61. Latres, E., et al., Role of the F-box protein Skp2 in lymphomagenesis. Proc Natl Acad Sci U S A, 2001. 98(5): p. 2515-20.
62. Zhang, H., et al., p19Skp1 and p45Skp2 are essential elements of the cyclin A-CDK2 S phase kinase. Cell, 1995. 82(6): p. 915-25.
63. Kurland, J.F. and W.P. Tansey, Crashing waves of destruction: the cell cycle and APC(Cdh1) regulation of SCF(Skp2). Cancer Cell, 2004. 5(4): p. 305-6.
64. Yu, Z.K., J.L. Gervais, and H. Zhang, Human CUL-1 associates with the SKP1/SKP2 complex and regulates p21(CIP1/WAF1) and cyclin D proteins. Proc Natl Acad Sci U S A, 1998. 95(19): p. 11324-9.
65. Carrano, A.C., et al., SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nat Cell Biol, 1999. 1(4): p. 193-9.
66. Kudo, Y., et al., High expression of S-phase kinase-interacting protein 2, human F-box protein, correlates with poor prognosis in oral squamous cell carcinomas. Cancer Res, 2001. 61(19): p. 7044-7.
67. Bilodeau, M., et al., Skp2 induction and phosphorylation is associated with the late G1 phase of proliferating rat hepatocytes. FEBS Lett, 1999. 452(3): p. 247-53.
68. Gao, D., et al., Phosphorylation by Akt1 promotes cytoplasmic localization of Skp2 and impairs APCCdh1-mediated Skp2 destruction. Nat Cell Biol, 2009. 11(4): p. 397-408.
69. Rodier, G., et al., Phosphorylation of Skp2 regulated by CDK2 and Cdc14B protects it from degradation by APC(Cdh1) in G1 phase. EMBO J, 2008. 27(4): p. 679-91.
70. Konopleva, M., et al., Mechanisms of apoptosis sensitivity and resistance to the BH3 mimetic ABT-737 in acute myeloid leukemia. Cancer Cell, 2006. 10(5): p. 375-88.
71. Kluck, R.M., et al., The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science, 1997. 275(5303): p. 1132-6.
72. Yang, J., et al., Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science, 1997. 275(5303): p. 1129-32.
73. Certo, M., et al., Mitochondria primed by death signals determine cellular addiction to antiapoptotic BCL-2 family members. Cancer Cell, 2006. 9(5): p. 351-65.
74. Oltersdorf, T., et al., An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature, 2005. 435(7042): p. 677-81.
75. Del Gaizo Moore, V., et al., Chronic lymphocytic leukemia requires BCL2 to sequester prodeath BIM, explaining sensitivity to BCL2 antagonist ABT-737. J Clin Invest, 2007. 117(1): p. 112-21.
76. Jane, E.P., et al., Inhibition of Phosphatidylinositol 3-Kinase/AKT Signaling by NVP-BKM120 Promotes ABT-737-induced toxicity in a caspase-dependent manner through mitochondrial dysfunction and DNA damage response in established and primary cultured glioblastoma cells. J Pharmacol Exp Ther, 2014.
77. McEleny, K., et al., Caffeic acid phenethyl ester-induced PC-3 cell apoptosis is caspase-dependent and mediated through the loss of inhibitors of apoptosis proteins. BJU Int, 2004. 94(3): p. 402-6.
78. Chuu, C.P., et al., Suppression of androgen receptor signaling and prostate specific antigen expression by (-)-epigallocatechin-3-gallate in different progression stages of LNCaP prostate cancer cells. Cancer Lett, 2009. 275(1): p. 86-92.
79. Lin, C.Y., et al., Cholestane-3beta, 5alpha, 6beta-triol suppresses proliferation, migration, and invasion of human prostate cancer cells. PLoS One, 2013. 8(6): p. e65734.
80. Ciaccio, M.F., et al., Systems analysis of EGF receptor signaling dynamics with microwestern arrays. Nat Methods, 2010. 7(2): p. 148-55.
81. Kim, R.H., R.J. Bold, and H.J. Kung, ADI, autophagy and apoptosis: metabolic stress as a therapeutic option for prostate cancer. Autophagy, 2009. 5(4): p. 567-8.
82. Celli, N., et al., In vitro and in vivo stability of caffeic acid phenethyl ester, a bioactive compound of propolis. J Agric Food Chem, 2007. 55(9): p. 3398-407.
83. Lin, J., et al., The phosphatidylinositol 3'-kinase pathway is a dominant growth factor-activated cell survival pathway in LNCaP human prostate carcinoma cells. Cancer Res, 1999. 59(12): p. 2891-7.
84. Chen, L. and D.A. Tweddle, p53, SKP2, and DKK3 as MYCN Target Genes and Their Potential Therapeutic Significance. Front Oncol, 2012. 2: p. 173.