簡易檢索 / 詳目顯示

研究生: 蕭稟璇
Hsiao, Ping-Hsuan
論文名稱: 利用咖啡酸苯乙酯CAPE作為LNCaP 104-R1復發前列腺癌細胞株的治療藥物
Using Caffeic Acid Phenethyl Ester as a Therapeutic Agent for Suppression of Castration-Resistent LNCaP 104-R1 Prostate Cancer Cell Line
指導教授: 褚志斌
Chuu, Chih-Pin
汪宏達
Wang, Horng-Dar
口試委員: 張中和
Chung-Ho Chang
劉俊揚
Jun-Yang Liou
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 生物科技研究所
Biotechnology
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 64
中文關鍵詞: 咖啡酸苯乙酯前列腺癌細胞週期
外文關鍵詞: caffeic acid phenethyl ester, prostate cancer, cell cycle
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 咖啡酸苯乙酯 (caffeic acid phenethyl ester, CAPE)是一種從蜂膠中萃取出的生物活性成分。本實驗室先前研究指出,不論是細胞實驗或是動物實驗,CAPE處理均能抑制男性賀爾蒙依賴型LNCaP 104-S 前列腺癌細胞生長。其分子機轉是透過抑制Akt與c-Myc的訊息傳遞路徑,因而導致細胞週期停滯在G1階段。目前轉移性前列腺癌最主要的治療方法是賀爾蒙療法 (Androgen ablation therapy),但是大多數接受賀爾蒙療法的前列腺癌患者一至三年後,最終進展復發成非賀爾蒙依賴型前列腺癌 (CRPC),復發後患者平均存活時間約一至兩年。目前仍然缺乏有效的治療方法,所以極需發展出新的治療方法。
    LNCaP癌細胞株是從轉移到淋巴結的人類前列腺癌細胞中所產生。將男性賀爾蒙依賴型LNAaP 104-S癌細胞持續培養在缺乏男性賀爾蒙的環境下,能獲得非男性賀爾蒙依賴型的 LNCaP 104-R1 癌細胞株, LNCaP 104-R1癌細胞能模擬非賀爾蒙依賴型前列腺病患的情況。
    我們發現CAPE處理能使LNCaP 104-R1癌細胞的細胞週期停滯在G1階段,進而抑制癌細胞增生,並能抑制裸鼠腫瘤生長。Micro-Western Array (MWA) 是種高通量西方點墨微陣列,能夠同時檢測6~15種樣品的96~384支抗體表現。藉由高通量西方點墨微陣列,我們發現CAPE處理在LNCaP 104-R1癌細胞中只是輕微抑制Akt訊息傳遞,卻能顯著抑制Skp2表現量。這也許可以解釋為何LNCaP 104-R1癌細胞相較於LNAaP 104-S癌細胞對於CAPE具有較大的耐受能力。Skp2過量表現能夠阻斷CAPE的抑制效果。CAPE與PI3K抑制劑-LY294002及B-cl2抑制劑ABT-737共同處理下都具有加乘效果。我們的發現指出CAPE具有潛力能做為非賀爾蒙依賴型前列腺癌的輔助治療。


    Caffeic acid phenethyl ester (CAPE) is a bioactive component derived from honeybee hive propolis. We previously showed that treatment with CAPE suppresses growth of androgen-dependent AR-positive LNCaP 104-S cells both in vitro and in vivo via inhibition of Akt and c-Myc signaling, thus causes G1 cell cycle arrest. Androgen ablation therapy is the primary treatment for metastatic prostate cancer (PCa). However, a majority of PCa patients receiving the androgen ablation therapy will ultimately develop recurrent castration-resistant prostate cancer (CRPC) within 1-3 years after treatment with a median overall survival time of 1-2 years after relapse. There is currently no effective therapy and new therapeutic targets are needed. The LNCaP cancer cell line was established from a human lymph node metastatic lesion of prostatic adenocarcinoma. We have established AR-rich androgen-independent LNCaP 104-R1 cells derived from parental androgen-dependent LNCaP 104-S cells under androgen depleted condition. LNCaP 104-R1 cells mimic CRPC in patients. CAPE treatment caused G1 cell cycle arrest in 104-R1 cells and thus suppressed cell proliferation and tumor growth in nude mice. Micro-Western Array (MWA) is an antibody-based modified reverse phase array, which allows detecting protein expression level or phosphorylation status change of 96-384 different antibodies in 6-15 samples simultaneously. Using MWA platform, we found that CAPE reduced Akt-related proteins expression slightly, but decrease Skp2 abundance significantly, which may explain its larger resistance to CAPE treatment than 104-S cells. Overexpression of Skp2 blocked suppressive effect of CAPE. Co-treatment of CAPE with PI3K inhibitor LY294002 or Bcl-2 inhibitor ABT-737 both showed synergistic suppressive effects. Our finding suggested that CAPE treatment is a potential therapy for CRPC.

    謝誌………………………………………………………………………………………i ABSTRACT,………………………………………………………………….…………ii 中文摘要………………………………………………………………………………….iv ABBREVIATION………………………………………………………………………vi CHAPTER 1. INTRODUCTION …………………………..………………………………………...1 1.1 Prostate cancer………………………………………………………..……………1 1.2 Caffeic acid phenethyl ester……………………………………………….………4 1.3 Phosphatidylinositol 3-kinase (PI3K) /Akt pathway……………………..………5 1.4 The cell cycle………………………………………………………………………5 1.5 S-phase kinase–associated protein 2 (Skp2) ……………………………………...7 1.6 B-cell lymphoma 2 (Bcl-2) and Bcl-2 inhibitor ABT-737…………………….…8 1.7 The aims of the study………………………..……………………………….8 1.8 The Flowchart of the study…………………………………………...………...10 2. MATERIALS and METHODS…………………………………………………….…11 2.1 Reagents……………………………………………………………………….…11 2.2 Cell Culture………………………………………………………………………12 2.3 The Preparation and Process of CAPE………………………………………...…13 2.4 Cell Viability Assay………………………………………...…………………….14 2.5 Cell Proliferation Assay……………………………………...…………………...15 2.6 Soft Agar Colony Formation Assay………………………………...……………15 2.7 Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR)………………..16 2.8 Micro-Western Array……………..………………………. ……………………..17 2.9 Western Blotting Analysis……………………..…………………….………....18 2.10 Protein Overexpression……………………..……………………….………...19 2.11 Flow Cytometry assay…...……………………………..……………………...20 2.12 Tumor Xenografts………………...…………………………………………...21 2.13 Statistics…………………………...…………………………………………...22 3. RESULTS………………………………...…………………………………………..23 3.1 CAPE treatment suppresses the survival and proliferation of LNCaP 104-R1 human prostate cancer cells ……...………………………………………………23 3.2 CAPE treatment suppresses soft agar colony formation of LNCaP 104R1 cells. . …………………………………………………………………………….24 3.3 CAPE treatment disturbs cell cycle progression in LNCaP 104R1 cells………...24 3.4 CAPE causes a reduction in abundance and activity of cell cycle promoting proteins. ………………………………………………………………………….25 3.5 CAPE treatment downregulates mRNA level expression. …………………...….27 3.6 Overexpression of Akt1 or Skp2 in LNCaP 104-R1 cells rescues inhibition cause by CAPE treatment. ……………….......................................................................27 3.7 Combined treatment of CAPE with LY294002 shows synergistic and antagonistic inhibition on proliferation of LNCaP 104-R1 cell. ...............................................28 3.8 Combined treatment of CAPE with Bcl-2 inhibitor ABT-737 shows synergistic and antagonistic inhibition on proliferation of LNCaP 104-R1 cell. ....................29 3.9 CAPE treatment retards growth of prostate cancer xenografts in nude mice. ....30 4. DISCUSSION ……………………...………………………………………………..32 5. REFERENCES………………………………………….…………………………..36 6. FIGURES and FIGURE LEGENDS………………………………….……………...42 Figure 1…………………………….………………………………….……………...42 Figure 2…………………………….………………………………….……………...43 Figure 3…………………………….………………………………….……………...44 Figure 4…………………………….………………………………….……………...45 Figure 5…………………………….………………………………….……………...46 Figure 6…………………………….………………………………….……………...47 Figure 7…………………………….………………………………….……………...48 Figure 8…………………………….………………………………….……………...49 Figure 9…………………………….………………………………….……………...50 Figure 10………………………….………………………………..….……………...56 Figure 11………………………….………………………………..….……………...57 Figure 12………………………….………………………………..….……………...58 Figure 13………………………….………………………………..….……………...59 Figure 14………………………….………………………………..….……………...60 Figure 15………………………….………………………………..….……………...61 Figure 16………………………….………………………………..….……………...62 Figure 17………………………….………………………………..….……………...63 Figure 18……………………….……………………………………………………..64

    1. Gregg, J.L., et al., Analysis of gene expression in prostate cancer epithelial and interstitial stromal cells using laser capture microdissection. BMC Cancer, 2010. 10: p. 165.
    2. Huggins, C. and C.V. Hodges, Studies on prostatic cancer: I. The effect of castration, of estrogen and of androgen injection on serum phosphatases in metastatic carcinoma of the prostate. 1941. J Urol, 2002. 168(1): p. 9-12.
    3. Wu, X., et al., Stromal cell heterogeneity in fibroblast growth factor-mediated stromal-epithelial cell cross-talk in premalignant prostate tumors. Cancer Res, 2003. 63(16): p. 4936-44.
    4. Chung, L.W., et al., New targets for therapy in prostate cancer: modulation of stromal-epithelial interactions. Urology, 2003. 62(5 Suppl 1): p. 44-54.
    5. Lopaczynski, W., A.M. Hruszkewycz, and R. Lieberman, Preprostatectomy: A clinical model to study stromal-epithelial interactions. Urology, 2001. 57(4 Suppl 1): p. 194-9.
    6. Sung, S.Y. and L.W. Chung, Prostate tumor-stroma interaction: molecular mechanisms and opportunities for therapeutic targeting. Differentiation, 2002. 70(9-10): p. 506-21.
    7. Gronberg, H., Prostate cancer epidemiology. Lancet, 2003. 361(9360): p. 859-64.
    8. Lichtenstein, P., et al., Environmental and heritable factors in the causation of cancer--analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med, 2000. 343(2): p. 78-85.
    9. Lindzey, J., et al., Molecular mechanisms of androgen action. Vitam Horm, 1994. 49: p. 383-432.
    10. Liang, T. and S. Liao, Inhibition of steroid 5 alpha-reductase by specific aliphatic unsaturated fatty acids. Biochem J, 1992. 285 ( Pt 2): p. 557-62.
    11. Hellerstedt, B.A. and K.J. Pienta, The current state of hormonal therapy for prostate cancer. CA Cancer J Clin, 2002. 52(3): p. 154-79.
    12. Chuu, C.P., et al., Androgen suppresses proliferation of castration-resistant LNCaP 104-R2 prostate cancer cells through androgen receptor, Skp2, and c-Myc. Cancer Sci, 2011. 102(11): p. 2022-8.
    13. Keating, N.L., et al., Diabetes and cardiovascular disease during androgen deprivation therapy: observational study of veterans with prostate cancer. J Natl Cancer Inst, 2010. 102(1): p. 39-46.
    14. Keating, N.L., A.J. O'Malley, and M.R. Smith, Diabetes and cardiovascular disease during androgen deprivation therapy for prostate cancer. J Clin Oncol, 2006. 24(27): p. 4448-56.
    15. Saigal, C.S., et al., Androgen deprivation therapy increases cardiovascular morbidity in men with prostate cancer. Cancer, 2007. 110(7): p. 1493-500.
    16. Seruga, B. and I.F. Tannock, Intermittent androgen blockade should be regarded as standard therapy in prostate cancer. Nat Clin Pract Oncol, 2008. 5(10): p. 574-6.
    17. Gilligan, T. and P.W. Kantoff, Chemotherapy for prostate cancer. Urology, 2002. 60(3 Suppl 1): p. 94-100; discussion 100.
    18. Horoszewicz, J.S., et al., The LNCaP cell line--a new model for studies on human prostatic carcinoma. Prog Clin Biol Res, 1980. 37: p. 115-32.
    19. Lin, H.P., et al., Difference in Protein Expression Profile and Chemotherapy Drugs Response of Different Progression Stages of LNCaP Sublines and Other Human Prostate Cancer Cells. PLoS One, 2013. 8(12): p. e82625.
    20. Chuu, C.P., et al., Androgen causes growth suppression and reversion of androgen-independent prostate cancer xenografts to an androgen-stimulated phenotype in athymic mice. Cancer Res, 2005. 65(6): p. 2082-4.
    21. Chuu, C.P., et al., Inhibition of tumor growth and progression of LNCaP prostate cancer cells in athymic mice by androgen and liver X receptor agonist. Cancer Res, 2006. 66(13): p. 6482-6.
    22. Kokontis, J., et al., Increased androgen receptor activity and altered c-myc expression in prostate cancer cells after long-term androgen deprivation. Cancer Res, 1994. 54(6): p. 1566-73.
    23. Kokontis, J.M., N. Hay, and S. Liao, Progression of LNCaP prostate tumor cells during androgen deprivation: hormone-independent growth, repression of proliferation by androgen, and role for p27Kip1 in androgen-induced cell cycle arrest. Mol Endocrinol, 1998. 12(7): p. 941-53.
    24. Kokontis, J.M., et al., Role of androgen receptor in the progression of human prostate tumor cells to androgen independence and insensitivity. Prostate, 2005. 65(4): p. 287-98.
    25. Umekita, Y., et al., Human prostate tumor growth in athymic mice: inhibition by androgens and stimulation by finasteride. Proc Natl Acad Sci U S A, 1996. 93(21): p. 11802-7.
    26. Xie, B.X., et al., Analysis of differentially expressed genes in LNCaP prostate cancer progression model. J Androl, 2011. 32(2): p. 170-82.
    27. Thalmann, G.N., et al., LNCaP progression model of human prostate cancer: androgen-independence and osseous metastasis. Prostate, 2000. 44(2): p. 91-103 Jul 1;44(2).
    28. Wu, H.C., et al., Derivation of androgen-independent human LNCaP prostatic cancer cell sublines: role of bone stromal cells. Int J Cancer, 1994. 57(3): p. 406-12.
    29. Natarajan, K., et al., Caffeic acid phenethyl ester is a potent and specific inhibitor of activation of nuclear transcription factor NF-kappa B. Proc Natl Acad Sci U S A, 1996. 93(17): p. 9090-5.
    30. Lin, H.P., S.S. Jiang, and C.P. Chuu, Caffeic acid phenethyl ester causes p21 induction, Akt signaling reduction, and growth inhibition in PC-3 human prostate cancer cells. PLoS One, 2012. 7(2): p. e31286.
    31. Chiao, C., et al., Apoptosis and altered redox state induced by caffeic acid phenethyl ester (CAPE) in transformed rat fibroblast cells. Cancer Res, 1995. 55(16): p. 3576-83.
    32. Liao, H.F., et al., Inhibitory effect of caffeic acid phenethyl ester on angiogenesis, tumor invasion, and metastasis. J Agric Food Chem, 2003. 51(27): p. 7907-12.
    33. Kuo, Y.Y., et al., Caffeic Acid Phenethyl Ester Suppresses Proliferation and Survival of TW2.6 Human Oral Cancer Cells via Inhibition of Akt Signaling. Int J Mol Sci, 2013. 14(5): p. 8801-17.
    34. Chuu, C.P., et al., Caffeic acid phenethyl ester suppresses the proliferation of human prostate cancer cells through inhibition of p70S6K and Akt signaling networks. Cancer Prev Res (Phila), 2012. 5(5): p. 788-97.
    35. Lin, H.P., et al., Caffeic Acid phenethyl ester as a potential treatment for advanced prostate cancer targeting akt signaling. Int J Mol Sci, 2013. 14(3): p. 5264-83.
    36. He, Y.J., et al., Inhibitory effect of caffeic acid phenethyl ester on the growth of SW480 colorectal tumor cells involves beta-catenin associated signaling pathway down-regulation. World J Gastroenterol, 2006. 12(31): p. 4981-5.
    37. Kuo, H.C., et al., Inhibitory effect of caffeic acid phenethyl ester on the growth of C6 glioma cells in vitro and in vivo. Cancer Lett, 2006. 234(2): p. 199-208.
    38. Nagaoka, T., et al., Inhibitory effects of caffeic acid phenethyl ester analogues on experimental lung metastasis of murine colon 26-L5 carcinoma cells. Biol Pharm Bull, 2003. 26(5): p. 638-41.
    39. Vlahos, C.J., et al., A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002). J Biol Chem, 1994. 269(7): p. 5241-8.
    40. Fresno Vara, J.A., et al., PI3K/Akt signalling pathway and cancer. Cancer Treat Rev, 2004. 30(2): p. 193-204.
    41. Sarker, D., et al., Targeting the PI3K/AKT pathway for the treatment of prostate cancer. Clin Cancer Res, 2009. 15(15): p. 4799-805.
    42. Kreisberg, J.I., et al., Phosphorylation of Akt (Ser473) is an excellent predictor of poor clinical outcome in prostate cancer. Cancer Res, 2004. 64(15): p. 5232-6.
    43. Chan, C.H., et al., Regulation of Skp2 expression and activity and its role in cancer progression. ScientificWorldJournal, 2010. 10: p. 1001-15.
    44. Cooper, G.M., The Eukaryotic Cell Cycle., in The Cell: A Molecular Approach. 2nd edition. 2000, Sinauer Associates: Sunderland (MA).
    45. Wilkinson, M.G. and J.B. Millar, Control of the eukaryotic cell cycle by MAP kinase signaling pathways. FASEB J, 2000. 14(14): p. 2147-57.
    46. Nakayama, K.I. and K. Nakayama, Regulation of the cell cycle by SCF-type ubiquitin ligases. Semin Cell Dev Biol, 2005. 16(3): p. 323-33.
    47. Sutterluty, H., et al., p45SKP2 promotes p27Kip1 degradation and induces S phase in quiescent cells. Nat Cell Biol, 1999. 1(4): p. 207-14.
    48. Xiong, Y., et al., p21 is a universal inhibitor of cyclin kinases. Nature, 1993. 366(6456): p. 701-4.
    49. Shirane, M., et al., Down-regulation of p27(Kip1) by two mechanisms, ubiquitin-mediated degradation and proteolytic processing. J Biol Chem, 1999. 274(20): p. 13886-93.
    50. Perez-Roger, I., et al., Cyclins D1 and D2 mediate myc-induced proliferation via sequestration of p27(Kip1) and p21(Cip1). EMBO J, 1999. 18(19): p. 5310-20.
    51. Gu, Y., J. Rosenblatt, and D.O. Morgan, Cell cycle regulation of CDK2 activity by phosphorylation of Thr160 and Tyr15. EMBO J, 1992. 11(11): p. 3995-4005.
    52. Bartova, I., J. Koca, and M. Otyepka, Regulatory phosphorylation of cyclin-dependent kinase 2: insights from molecular dynamics simulations. J Mol Model, 2008. 14(8): p. 761-8.
    53. Yuan, F., et al., A novel role of proteasomal beta1 subunit in tumorigenesis. Biosci Rep, 2013. 33(4).
    54. Wakino, S., et al., Peroxisome proliferator-activated receptor gamma ligands inhibit retinoblastoma phosphorylation and G1--> S transition in vascular smooth muscle cells. J Biol Chem, 2000. 275(29): p. 22435-41.
    55. Nevins, J.R., et al., Role of the Rb/E2F pathway in cell growth control. J Cell Physiol, 1997. 173(2): p. 233-6.
    56. Weinberg, R.A., E2F and cell proliferation: a world turned upside down. Cell, 1996. 85(4): p. 457-9.
    57. Dowen, S.E., et al., Overexpression of Skp2 in carcinoma of the cervix does not correlate inversely with p27 expression. Int J Cancer, 2003. 105(3): p. 326-30.
    58. Gstaiger, M., et al., Skp2 is oncogenic and overexpressed in human cancers. Proc Natl Acad Sci U S A, 2001. 98(9): p. 5043-8.
    59. Carrano, A.C. and M. Pagano, Role of the F-box protein Skp2 in adhesion-dependent cell cycle progression. J Cell Biol, 2001. 153(7): p. 1381-90.
    60. Dowen, S.E., et al., Amplification of chromosome 5p correlates with increased expression of Skp2 in HPV-immortalized keratinocytes. Oncogene, 2003. 22(16): p. 2531-40.
    61. Latres, E., et al., Role of the F-box protein Skp2 in lymphomagenesis. Proc Natl Acad Sci U S A, 2001. 98(5): p. 2515-20.
    62. Zhang, H., et al., p19Skp1 and p45Skp2 are essential elements of the cyclin A-CDK2 S phase kinase. Cell, 1995. 82(6): p. 915-25.
    63. Kurland, J.F. and W.P. Tansey, Crashing waves of destruction: the cell cycle and APC(Cdh1) regulation of SCF(Skp2). Cancer Cell, 2004. 5(4): p. 305-6.
    64. Yu, Z.K., J.L. Gervais, and H. Zhang, Human CUL-1 associates with the SKP1/SKP2 complex and regulates p21(CIP1/WAF1) and cyclin D proteins. Proc Natl Acad Sci U S A, 1998. 95(19): p. 11324-9.
    65. Carrano, A.C., et al., SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nat Cell Biol, 1999. 1(4): p. 193-9.
    66. Kudo, Y., et al., High expression of S-phase kinase-interacting protein 2, human F-box protein, correlates with poor prognosis in oral squamous cell carcinomas. Cancer Res, 2001. 61(19): p. 7044-7.
    67. Bilodeau, M., et al., Skp2 induction and phosphorylation is associated with the late G1 phase of proliferating rat hepatocytes. FEBS Lett, 1999. 452(3): p. 247-53.
    68. Gao, D., et al., Phosphorylation by Akt1 promotes cytoplasmic localization of Skp2 and impairs APCCdh1-mediated Skp2 destruction. Nat Cell Biol, 2009. 11(4): p. 397-408.
    69. Rodier, G., et al., Phosphorylation of Skp2 regulated by CDK2 and Cdc14B protects it from degradation by APC(Cdh1) in G1 phase. EMBO J, 2008. 27(4): p. 679-91.
    70. Konopleva, M., et al., Mechanisms of apoptosis sensitivity and resistance to the BH3 mimetic ABT-737 in acute myeloid leukemia. Cancer Cell, 2006. 10(5): p. 375-88.
    71. Kluck, R.M., et al., The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science, 1997. 275(5303): p. 1132-6.
    72. Yang, J., et al., Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science, 1997. 275(5303): p. 1129-32.
    73. Certo, M., et al., Mitochondria primed by death signals determine cellular addiction to antiapoptotic BCL-2 family members. Cancer Cell, 2006. 9(5): p. 351-65.
    74. Oltersdorf, T., et al., An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature, 2005. 435(7042): p. 677-81.
    75. Del Gaizo Moore, V., et al., Chronic lymphocytic leukemia requires BCL2 to sequester prodeath BIM, explaining sensitivity to BCL2 antagonist ABT-737. J Clin Invest, 2007. 117(1): p. 112-21.
    76. Jane, E.P., et al., Inhibition of Phosphatidylinositol 3-Kinase/AKT Signaling by NVP-BKM120 Promotes ABT-737-induced toxicity in a caspase-dependent manner through mitochondrial dysfunction and DNA damage response in established and primary cultured glioblastoma cells. J Pharmacol Exp Ther, 2014.
    77. McEleny, K., et al., Caffeic acid phenethyl ester-induced PC-3 cell apoptosis is caspase-dependent and mediated through the loss of inhibitors of apoptosis proteins. BJU Int, 2004. 94(3): p. 402-6.
    78. Chuu, C.P., et al., Suppression of androgen receptor signaling and prostate specific antigen expression by (-)-epigallocatechin-3-gallate in different progression stages of LNCaP prostate cancer cells. Cancer Lett, 2009. 275(1): p. 86-92.
    79. Lin, C.Y., et al., Cholestane-3beta, 5alpha, 6beta-triol suppresses proliferation, migration, and invasion of human prostate cancer cells. PLoS One, 2013. 8(6): p. e65734.
    80. Ciaccio, M.F., et al., Systems analysis of EGF receptor signaling dynamics with microwestern arrays. Nat Methods, 2010. 7(2): p. 148-55.
    81. Kim, R.H., R.J. Bold, and H.J. Kung, ADI, autophagy and apoptosis: metabolic stress as a therapeutic option for prostate cancer. Autophagy, 2009. 5(4): p. 567-8.
    82. Celli, N., et al., In vitro and in vivo stability of caffeic acid phenethyl ester, a bioactive compound of propolis. J Agric Food Chem, 2007. 55(9): p. 3398-407.
    83. Lin, J., et al., The phosphatidylinositol 3'-kinase pathway is a dominant growth factor-activated cell survival pathway in LNCaP human prostate carcinoma cells. Cancer Res, 1999. 59(12): p. 2891-7.
    84. Chen, L. and D.A. Tweddle, p53, SKP2, and DKK3 as MYCN Target Genes and Their Potential Therapeutic Significance. Front Oncol, 2012. 2: p. 173.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE