簡易檢索 / 詳目顯示

研究生: 羅淑瑩
論文名稱: 非線性方程的解路徑之數值探討
指導教授: 簡國清
口試委員:
學位類別: 碩士
Master
系所名稱:
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 55
中文關鍵詞: 擬弧長延拓法隱函數定理解路徑轉彎點多重解
外文關鍵詞: Pseudo - arclength method, Implicit theorem, Solution paths, Turning point, Multiple solution
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本文中,研究者利用中央有限差分法、切線預測法、牛頓迭代法和擬弧長延拓法等數值方法,配合分歧理論的基礎—隱函數定理,做非線性方程的解路徑之數值探討,且針對兩個數學模型,求得解路徑圖及轉彎點,並探討多重解的存在。


    In this paper, we use the central finite difference method , tangent predictor method, Newton’s iterative method and pseudo - arclength continuation method, and bifurcation theory to investigate solution paths of nonlinear equations.
    At the same time, we research two mathematical models to find solution paths, turning points, and investigate the multiple solutions.

    第一章 緒論                    5 第二章 分歧理論與擬弧長延拓法           7   2.1 分歧問題 …………………………………………… 7   2.2 分歧理論 …………………………………………… 9   2.3 局部延拓法 …………………………………………11   2.4 擬弧長延拓法 ………………………………………14 第三章 非線性方程問題的數值方法          16   3.1 中央有限差分法 ……………………………………16   3.2 牛頓迭代法 …………………………………………19   3.3 擬弧長延拓法之數值計算 …………………………20   3.4 演算法 ………………………………………………24 第四章 數值實驗                  27 第五章 結論                    52 參考文獻                      53 圖 目 次 4.1  方程 在 時的解路徑圖。………………………… 30 4.2  方程 在 時的解路徑圖。 ……………………… 30 4.3  方程 在 時的解路徑圖。……………………… 31 4.4  方程 在 時的解路徑圖。………………………… 31 4.5  方程 在 時的解路徑圖。 ……………………… 32 4.6  方程 在 時的解路徑圖。………………………… 32 4.7  方程 在 時的解路徑圖。 ……………………… 33 4.8  方程 在 時的解路徑圖。 ……………………… 33 4.9  方程 在 時的解路徑圖。 ……………………… 34 4.10  方程 在 時的解路徑圖。………………………… 34 4.11  方程 在 至 綜合解路徑圖。 …………… 35 4.12  方程 在 至 綜合解路徑圖。…………………36 4.13  方程 在 時的解路徑圖。…………………………… 41 4.14  方程 在 時的解路徑圖。………………………… 41 4.15  方程 在 時的解路徑圖。 ……………………… 42 4.16  方程 在 時的解路徑圖。 ……………………… 42 4.17  方程 在 時的解路徑圖。………………………… 43 4.18  方程 在 時的解路徑圖。 ……………………… 43 4.19  方程 在 時的解路徑圖。………………………… 44 4.20  方程 在 時的解路徑圖。………………………… 44 4.21  方程 在 時的解路徑圖。……………………… 45 4.22  方程 在 時的解路徑圖。……………………… 45 4.23  方程 在 時的解路徑圖。……………………… 46 4.24  方程 在 時的解路徑圖。……………………… 46 4.25  方程 在 時的解路徑圖。…………………………47 4.26 方程 在 時的解路徑圖。………………………… 47 4.27 方程 在 至 綜合解路徑圖。 …………… 48 4.28 方程 在 至 綜合解路徑圖。 ……………… 49 表  目  次 4.1  時,方程(4.1)的解路徑只存在一個轉彎點……… 37 4.2  時,方程(4.1)的解路徑存在兩個轉彎點… 38 4.3  時,方程(4.3)的解路徑只存在一個轉彎點………50 4.4  時,方程(4.3)的解路徑存在兩個轉彎點…51

    〔1〕Choi,Y. S., Jen, K. C.,(簡國清) and Mckenna, P. J., The Structure of Solution Set for Periodic Oscillations in a Suspension Bridge Model,IMA J. Appl. Math., 47, 283-306, (1991).
    〔2〕Yang Zhong-hua, Keller, H. B., A direct method for computing higher order folds, SIAM J. Sci. Stat. Comp. 7, 351-361,(1986).
    〔3〕Keller, H. B., Lectures on Numerical Methods in Bifurcation Problems, TATA Institute of Fundamental Research, Springer-Verlag, (1987).
    〔4〕Wang, S. H., On S-Shaped Bifurcation curves, Nonlinear Analysis: theory, methods and application, 22, 1475-1485(1994).
    〔5〕Grandall, M. G. and Rabinowtiz, P. H. Mathematical Theory of Bifurcation, Bifurcation Phenomena in Mathematical Physics and Related Topics, edit by Bardos, C. and Bessis, D., NATO Advanced Study Institute Series, (1979).
    〔6〕Keller, H, B. and Langford, W. F., Iterations, perturbations and multiplicities for nonlinear bifurcation problems, Arch. Rational Mech. Anal., 48, 83-108(1972).
    〔7〕Shivaji, R., Uniqueness result for a class of postione problems, Nonlinear Analysis : theory, methods and application, 7, 223-230(1983).
    〔8〕Lions, P.L., On the existence of positive solutions of semilinear elliptic equation, SIAM Rev., 24, 441-467(1983).
    〔9〕Keller, H. B. , Lectures on Numerical Methods in Bifurcation Problems, TATA Institute of Fundamental, Research, Springer-Verlag,(1987).
    〔10〕Crandall, M. G. , An Introduction to Constructive Aspects of Bifurcation and The Implicit Function Theorem, Application of Bifurcation Theorem, edited by P. H. Rabinowtiz, Academic Press, New York, 1-35,(1977).
    〔11〕Kller, H. B. , Numerical Solution and Nonlinear Eigenvalue Problems, Applications of Bifurcation Theory, Edited by Rabinowitz, P. H., Academic Press, PP.359-384,(1997).
    〔12〕Allgower E.L. and Chien C.S. , Continuation and local perturbation for multiple bifurcation, SIAM J. SCI. STAT. Comput. , 7, 1265-1281(1986).
    〔13〕Jepson A.D. and Spence A. , Numerical Methods for Bifurcation Problems, State of the Art in Nueriacl Analysis, edit bu A. Iserles, MJD Powell(1987).
    〔14〕Iooss, G.. and Joseph, D.D., Elementary Stability and Bifurcation Theory, Spring-Verleg(1989).
    〔15〕邵仲平,非線性特徵值問題的解路徑之延拓與分歧。輔仁大學碩士論文,1996.
    〔16〕蕭嘉璽,半線性橢圓系統解路徑之延拓與分歧。新竹師範學院碩士論文, 2001.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE