簡易檢索 / 詳目顯示

研究生: 黃國群
Kuo-Chun Huang
論文名稱: 布魯頓氏酪胺酸激酶 SH2 區塊和登革熱病毒封套蛋白第三區塊結構研究
Structural Studies of the SH2 Domain of Bruton’s Tyrosine Kinase and the Domain III of Dengue Virus Envelop Protein
指導教授: 程家維
Jay-Wei Cheng
口試委員:
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 生命科學系
Department of Life Sciences
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 84
中文關鍵詞: 布魯頓氏酪胺酸激酶登革熱病毒核磁共振溶液結構封套蛋白SH2區塊
外文關鍵詞: Bruton's Tyrosine Kinase, dengue virus, NMR, solution structures, envelope protein, SH2 domain
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 人類X染色體之無珈瑪免疫球蛋白症 (XLA,或稱布魯頓氏免疫球蛋白血症) 及老鼠X染色體之免疫不全症起因自布魯頓氏酪胺酸激酶(BTK) 的基因突變。人類布魯頓氏酪胺酸激酶的第四個區塊(SH2區塊) 的突變會引起無珈瑪免疫球蛋白症,而這個區塊對磷脂酶C-□的磷酸化是不可或缺的。最近在學術界上,有科學家發現B細胞連接蛋白(BLNK或稱SLP-65)會與布魯頓氏酪胺酸激酶的SH2區塊作用,進而活化磷脂酶C-□。為了了解布魯頓氏酪胺酸激酶在B細胞生長過程中所扮演的角色,我們將布魯頓氏酪胺酸激酶SH2區塊的1H,15N與13C化學位移標定出來並解出布魯頓氏酪胺酸激酶SH2區塊在溶液中的結構,以及找出布魯頓氏酪胺酸激酶SH2區塊與B細胞連接蛋白磷酸化縮氨酸作用的位置。由研究的結果,我們發現在因布魯頓氏酪胺酸激酶的SH2區塊突變造成X染色體之無珈瑪免疫球蛋白症中,這些突變的位置與B細胞連接蛋白磷酸化縮氨酸作用的位置是有相關的。因此突變這些重要位置導致較弱的結合,可能會影響激酶的功能以及引起X染色體之無珈瑪免疫球蛋白症。
    此外我們也利用核磁共振光譜儀及凝膠滲透色譜法研究布魯頓氏酪胺酸激酶TH-SH3-SH2三個區塊自我調節的結構與機構。藉由有較大的化學位移擾動,指出這些位置為SH3區塊中第四貝塔與第五貝塔間的RT環、n-Src環及helix-like環。這些在SH3區塊中有較大化學位移擾動的位置與p120cbl 之脯胺酸豐富序列和SH3區塊的複合物中SH3區塊有較大化學位移擾動相似。這個結果證實了分子內區塊的關聯是透過TH區塊中脯胺酸豐富序列區域與SH3區塊中會與PXXP序列作用的位置,而非SH3區塊與SH2區塊間的作用。藉由這些研究,我們提出布魯頓氏酪胺酸激酶在B細胞生長過程中控制訊號傳遞過程的模型。
    登革熱是由登革熱病毒所引起的一種具感染性的急性疾病,有四種血清型態。病毒的結構包含三個主要的結構蛋白質與七個非結構性的蛋白質。結構性蛋白質包含有核蛋白(約12 kD),非醣化的膜蛋白(約8 kD)和一個外套膜蛋白(約53 kD)。非結構蛋白質區分為NS1, NS2A, NS2B, NS3, NS4A, NS4B與NS5 等。登革熱病毒的感染是藉由病毒表面蛋白與宿主細胞表面上特異性接受器及協助接受器分子間的作用。其中最外層的是登革熱病毒外套膜蛋白的第三區塊,是誘出中和性單株抗體之主要抗原區塊,且與鍵結宿主細胞表面的硫酸鹽化的肝磷脂有著重要的關係。因此我們解出登革熱病毒外套膜蛋白第三區塊的結構,以及探查與中和性單株抗體及葡萄胺聚醣接觸的位置,期望藉由以結構為基礎提供抗登革熱疫苗的發展。


    Bruton's tyrosine kinase (Btk) is encoded by the gene that causes the primary immunodeficiency disease X-linked agammaglobulinemia (XLA) in humans and X-linked immunodeficiency (Xid) in mice when mutated. The SH2 domain, the fourth domain of the human Btk, is essential for phospholipase C-□ phosphorylation and mutations in this domain lead to XLA. Recently, the B-cell linker protein (BLNK, also called SLP-65) was found to interact with the SH2 domain of Btk and this association is required for the activation of phospholipase C-□. To understand the role of Btk in B cell development, here we have reported the 1H, 15N, and 13C resonance assignments of the BTK-SH2 domain and have determined the solution structures and the human BLNK phosphopeptide binding sites of the Btk SH2 domain. We have also found that mutation sites of the Btk SH2 domain identified from XLA patients are involved in the phosphopeptide binding. It is likely that the point-mutated Btk SH2 domains fail to present to the ligand the crucial residue in the correct context, thus leading to a weaker binding. The altered binding behavior likely affects the kinase function, and possibly causes XLA.
    In addition to the isolated Btk SH2 domain, we have studied the structure and mechanism of the self-regulation phenomenon of a protein fragment containing the TH-SH3-SH2 domain of Btk by NMR spectroscopy and gel permeation chromatography. Chemical shift perturbations indicate that residues located in the RT loop, n-Src loop and helix-like loop between □4 and □5 of the SH3 domain exhibit large changes. These chemical shift changes are in a manner similar to those have been found in the p120cbl proline-rich peptide/SH3 complex. The results indicate an intermolecular association through the proline-rich region of the TH domain and the PXXP binding sites of the SH3 domain but not through the SH3 and SH2 domain-domain interactions. Based on the present and previous studies, we propose a model for the control of the signaling processes of Btk in B cell development.

    Dengue is an acute infectious disease caused by the dengue virus (DENV), which has four serotypes. The virion contains three structural proteins - a 12 kD nucleocapsid or core protein (C), a 8 kD non-glycosylated membrane protein (M), and a 53 kD glycosylated envelope protein (E), as well as seven non-structural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, NS5). DENV initiates infection by attaching to host cells via interaction between viral surface proteins and specific receptor/coreceptor molecules on target cells. The outer domain III of the dengue virus envelope protein (DENV-E3) is the dominant antigen in eliciting neutralizing antibodies and plays an important role in binding to target cell heparin sulfate. In order to provide the structural basis for immunologic protection and for vaccine design effective against DENV, we have determined the solution structure and the antibodies-neutralizing binding sites of the domain III of the dengue virus envelop protein.

    Abstract Abstract in Chinese Chapter 1 1H, 15N and 13C resonance assignments of the SH2 domain from the human Bruton’s tyrosine kinase Introduction Materials and Methods Results and Discussion Chapter 2 NMR structural and mechanistic studies of the self-association phenomenon of the TH-SH3-SH2 domain of Btk Introduction Materials and Methods Results and Discussion Chapter 3 Solution structure and phosphopeptide binding of the SH2 domain from the human Bruton’s tyrosine kinase Introduction Materials and Methods Results and Discussion Chapter 4 Solution structure and the neutralizing antibody binding sites of the domain III of the dengue-2 virus envelop protein Introduction Materials and Methods Results and Discussion References

    Andreotti, A. H., Bunnell, S. C., Feng, S., Berg, L. J., and Schreiber, S. L. (1997) Nature, 385, 93-97.
    Bradshaw, J. M., Mitaxov, V., and Waksman, G. (1999) J. Mol. Biol., 293, 971-985.
    Brazin, K. N., Fulton, D. B., and Andreotti, A. H. (2000) J. Mol. Biol., 302, 607-623.
    Brazin, K. N., Mallis, R. J., Fulton, D. B., and Andreotti, A. H. (2002) Proc. Natl. Acad. Sci., 99, 1899-1904.
    Brunger, A. T. (1993) X-PLOR Version 3.1: A system for X-Ray Crystallography and NMR, Yale University Press, New Haven.
    Bunnell, S. C., Diehn, M., Yaffe, M. B., Findell, P. R., Cantley, L. C. and Berg, L. J. (2000) J. Biol. Chem., 275, 2219-30.
    Burke, D. S., and Monath, T. P. (2001) Fields Virology 4th edn., 1043-1125, Lippincott Williams & Wilkins, Philadelphia, PA
    Cecilia, D., and Gould, E. A. (1991) Virology, 181, 70-77.
    Chambers, T. J., Hahn, C. S., Galler, R., and Rice, C. M. (1990) Annu. Rev. Microbiol., 44, 649-688.
    Chen Y, Maguire T, Hileman RE, Fromm JR, Esko JD, Linhardt RJ, Marks RM. (1997) Nat Med., 3, 866-871.
    Cheng, G., Ye, Z. S. and Baltimore, D. (1994) Proc. Natl. Acad, Sci. USA, 91, 8152-8155.
    Cohen, G. B., Ren, R. and Baltimore, D. (1995) Cell, 80, 237-248.
    Conly, M. E., Mathias, D., Treadaway, J., Minegishi, Y. and Rohrer, J. (1998) Am. J. Hum. Genet., 62, 1034-1043.
    Cornilescu, G., Delaglio, F., and Bax, A. (1999) J. Biomol. NMR, 13, 289-302.
    Crill, W.D. and Roehrig, J.T. (2001) J. Virology, 75, 7769-7773.
    Ding, W., Huang, X., Yang, X., Dunn, J. J., Luft, B. J., Koide, S., and Lawson, C. L. (2000) J. Mol. Biol., 302, 1153-1164.
    Ehrlich, H. J., Gebbink, R. K., Keijer, J., and Pannekoek, H. (1992) J. Biol. Chem., 267, 11606-11611.
    Ersdal-Badju, E., Lu, A., Zuo, Y., Picard, V., and Bock, S. C. (1997) J. Biol. Chem., 272, 19393–19400.
    Farrow, N. A., Zhang, O., Szabo, A., Torchia, D. A., and Kay, L. E. (1995) J. Biomol. NMR, 6, 153-162.
    Ferentz, A. E., and Wagner, G. (2000) Q. Rev. Biophys., 33, 29-65.
    Fiaux, J., Bertelsen, E. B., Horwich, A. L., and Wuthrich, K. (2002) Nature, 418, 207-211.
    Futami, J., Tsushima, Y., Tada, H., Seno, M., Yamada, H. (2000) J. Biochem. (Tokyo), 127, 435–441.
    Hansson, H., Mattsson, P. T., Allard, P., Haapaniemi, P., Vihinen, M., Smith, C. I. and Hard, T. (1998) Biochemistry, 37, 2912-2924.
    Hansson, H., Okoh, M. P., Smith, C. I. E., Vihinen, M. and Hard, T. (2001) FEBS Lett., 489, 67-70.
    Hansson, H., Smith, C. I. E. and Hard, T. (2001) FEBS Lett., 508, 11-15.
    Hiramatsu, K., Tadano, M., Men, R., and Lai, C. J. (1996) Virology, 224, 437-445.
    Hiroyuki, H., (1999) Cytokine & Growth Factor Reviews, 10, 267-280.
    Holzmann, H., Heinz, F. X., Mandl, C. W., Guirakhoo, F., and Kunz, C. (1990) J. Virol., 64, 5156-5159.
    Holzmann, H., Stiasny, K., Ecker, M., Kunz, C., and Heinz, F. X. (1997) J. Gen. Virol., 78, 31-37.
    Huang, X., Yang, X., Luft, B. J., and Koide, S. (1998) J. Mol. Biol., 281, 61-67.
    Huang, K. C., Tzeng, S. R., Pai, M. T. and Cheng, J. W. (2006) J. Biomol. NMR, 36, 73-78.
    Jiang, W. R., Lowe, A., Higgs, S., Reid, H., and Gould, E. A. (1993) J. Gen. Virol., 74, 931-935.
    Jin, L., Abrahams, J. P., Skinner, R., Petitou, M., Pike, R. N., and Carrell, R. W. (1997) Proc. Natl. Acad. Sci. U. S. A., 94, 14683–14688.
    Karen, M. L., Elliot, J. A., and James, D. B. (1995) J. Biomol. NMR, 5, 93-96.
    Koradi, R., Billeter, M., and Wuthrich, K. (1996) J. Mol. Graph., 14, 51-55.
    Kuhn, R. J., Zhang, W., Rossmann, M. G., Pletnev, S. V., Corver, J., Lenches, E., Jones, C. T., Mukhopadhyay, S., Chipman, P. R., Strauss, E. G., Baker, T. S., and Strauss, J. H. (2002) Cell, 108, 717-725.
    Kuriyan, J. and Cowburn, D. (1993) Current Opinion in Structural Biology, 3, 828-837.
    Okoh, M. P. and Vihinen, M. (2002) Biopolymers, 63, 325-334.
    Ladbury, J. E. and Arold, S. (2000) Chem. Biol., 7, 3-8.
    Laederach, A., Cradic, K. W., Fulton, D. B. and Andreotti, A. H. (2003) J. Mol. Biol., 329, 1011-1020.
    Laskowski, R. A., Rullmannn, J. A., MacArthur, M. W., Kaptein, R. and Thornton, J. M. (1996) J. Biomol. NMR, 8, 477-486.
    Lefevre, J. F., Dayie, K. T., Peng, J. W., and Wagner, G. (1996) Biochemistry, 35, 2674-2686.
    Leiting, B., Marsilio, F., and O'Connell, J. F. (1998) Anal. Biochem., 265, 351-355.
    Lin, B., Parrish, C. R., Murray, J. M., and Wright, P. J. (1994) Virology, 202, 885-890.
    Lin, C. W., and Wu, S. C. (2003) J. Virol., 77, 2600-2606.
    Mallis, R. J., Brazin, K. N., Fulton, D. B. and Andreotti, A. H. (2002) Nat. Struct. Biol., 9, 900-905.
    Markley, J. L., Bax, A., Arata, Y., Hilbers, C. W., Kaptein, R., Sykes, B. D., Wright, P. E., and Wuthrich, K. (1998) J. Biomol. NMR, 12, 1-23.
    Markley, J. L., Bax, A., Arata, Y., Hilbers, C. W., Kaptein, R., Sykes, B. D., Wright, P. E. and Wüthrich, K. (1998) Pure Appl. Chem., 70, 117–142.
    Markus, M. A., Dayie, K. T., Matsudaira, P. and Wagner, G. (1994) J. Magn. Reson. Ser. B, 105, 192-195.
    Marquez, J. A., Smith, C. I., Petoukhov, M. V., Lo, Surdo. P., Mattsson, P. T., Knekt, M., Westlund, A., Scheffzek, K., Saraste, M.,and Svergun, D. I. (2003) EMBO J., 22, 4616-4624.
    McBride, W. J. H., and Bielefeldt-Ohmann, H. (2000) Microbes and Infection, 2, 1041-1050.
    McMinn, P. C. (1997) J. Gen. Virology, 78, 2711-2722.
    Meng, F., Park, Y., Zhou, H. (2001) Int. J. Biochem. Cell. Biol., 33 701-709.
    Modis, Y., Ogata, S., Clements, D., and Harrison, S.C. (2003) Proc. Natl. Acad. Sci., 100, 6986-6991.
    Mukherjee, M., Dutta, K., Pascal, S. M., and Rox, R.O. (2004) J. Biomol. NMR, 29, 535-536.
    Olson, S. T., Bjo¨rk, I., and Shore, J. D. (1993) Methods Enzymol., 222, 525–559.
    Pai, M. T., Huang, K. C., Tzeng, S. R. and Cheng, J. W. (2002) J. Biomol. NMR, 24, 163-164.
    Patel, H. V., Tzeng, S. R., Liao, C. I., Chen, S. H. and Cheng, J. W. (1997) Proteins, 29, 545-552.
    Pawson, T. (1995) Nature, 373, 573-580.
    Pei, Z., Alexey, A. L., and Gerhard W. (2001) J. Biomol. NMR, 20, 11-14.
    Pervushin, K., Riek, R., Wider, G., and Wuthrich, K. (1997) Proc. Natl. Acad. Sci. USA, 94, 12366-12371.
    Pletneva, E. V., Sundd, M., Fulton, D. B. and Andreotti, A. H. (2006) J. Mol. Biol., 357, 550-561.
    Pratt, C. W., Whinna, H. C., and Church, F. C. (1992) J. Biol. Chem., 267, 8795–8801.
    Rey, F. A., Heinz, F. X., Mandl, C., Kunz, C., and Harrison, S. C. (1995) Nature, 375, 291-298.
    Roehring, J. T., Bolin, R. A., and Kelly, R. G. (1998) Virology, 246, 317-328.
    Saito, N. G., and Paterson, Y. (1996) Methods, 9, 516-524.
    Schlesinger, J. J., Chapman, S., Nestorowicz, A., Rice, C. M., Ginocchio, T. E., and Chambers, T. J. (1996) J. Gen. Virol. , 77, 1277-1285.
    Seif, S. A., Morita, K., Matsuo, S., Hasebe, M. F., and Igarashi, A. (1995) Vaccine, 13, 1515-1521.
    Shirk, R. A., Elisen, M. G. L. M., Meijers, J. C. M., and Church, F. C. (1994) J. Biol. Chem. , 269, 28690–28695.
    Shokat, K. M. (1995) Chemistry & Biology 2, 509-514.
    Sicheri, F., Moarefi, I. and Kuriyan, J. (1997) Nature, 385, 602-609.
    Smita, J., Navin, K., and Sathyamangalam, S. (2004) Protein Expression and Purification, 33, 80–91.
    Stone, S. R., Brown-Luedi, M. L., Rovelli, G., Guidolin, A., McGlynn, E., and Monard, D. (1994) Biochemistry, 33, 7731–7735.
    Su, Y. W., Zhang, Y., Schweikert, J., Koretzky, G. A., Reth, M. and Songyang, Z., Shoelson, S. E., Chaudhari, M., Gish, G., Pawson, T., Haser, W. G., King, F., Roberts, T., Ratnofsky, S., Lechleider, R. J., Neel, B. G., Birge, R. B., Fajardo, E. J., Chou, C. M., Hanafusa, H., Schaffhausen, B. and Cantley, L. C. (1993) Cell, 72, 767-778.
    Tashiro, M., and Montelione, G. T. (1995) Curr. Opin. Struct. Biol., 5, 471-481.
    Tsukada, S., Baba, Y. and Watanabe, D. (2001) Adv. Immunol., 77, 123-162.
    Tsukada, S., Saffran, D. C., Rawlings, D. J., Parolini, O., Allen, R. C., Klisak, I., Sparkes, R. S., Kubagawa, H., Mohandas, T. and Quan, S. (1993) Cell, 72, 279-290.
    Tzeng, S. R., Lou, Y. C., Pai, M. T. and Cheng, J. W. (2000) J. Biomol. NMR, 16, 303-312.
    Tzeng, S. R., Pai, M. T., Lung, F. D., Wu, C. W., Roller, P. P., Lei, B., Wei, C. J., Tu, S. C., Chen, S. H., Soong, W. J.,and Cheng, J. W. (2000) Protein Sci., 9, 2377-2385.
    Vetrie, D., Vorechovsky, I., Sideras, P., Holland, J., Davies, A., Flinter, F., Hammarstrom, L., Kinnon, C., Levinsky, R., Bobrow, M., Smith, C. I. E. and Bentley, D. R. (1993) Nature, 361, 226-233.
    Vihinen, M., Nilsson, L., and Smith, C. I. E. (1994) Biochem. Biophys. Res. Comm., 205, 1270-1277.
    Volk, D.E., Beasley, D.W., Kallick, D.A., Holbrook, M.R., Barrett, A.D., and Gorenstein, D.G. (2004) J. Biol. Chem., 279, 38755-38761.
    Volk, D.E., Chavez, L., Beasley, D.W., Barrett, A.D., Holbrook, M.R., Gorenstein, D.G. (2006) Virology, 351, 188-195.
    Volk, D.E., Lee, Y.C., Li, X., Thiviyanathan, V., Gromowski, G.D., Li, L., Lamb, A.R., Beasley, D.W., Barrett, A.D., Gorenstein, D.G. (2007) Virology, 364, 147-154.
    Whinna, H. C., Blinder, M. A., Szewczyk, M., Tollefsen, D. M., and Church, F. C. (1991) J. Biol. Chem., 266, 8129–8135.
    Wienands, J. (1999) Eur. J. Immunol., 29, 3702-3711.
    Wishart, D. S., Bigam, C. G., Yao, J., Abildgaard, F., Dyson, H. J., Oldfield, E., Markley, J. L. and Sykes, B. D. (1995) J. Biomol. NMR, 6, 135-140.
    Wu, C. W., Lin, Y. T., Huang, K. C., and Cheng, J. W. (2005) J. Biomol. NMR, 33, 76-77.
    Wu, K.P., Wu, C.W., Tsao, Y.P., Kuo, T.W., Lou, Y.C., Lin, C.W., Wu, S.C., and Cheng, J.W. (2003) J. Biol. Chem., 278, 46007-46013.
    Wu, S. C., and Lin, C. W. (2001) Virus Res., 76, 59-69.
    Wu, S. C., Lian, W. C., Hsu, L. C., and Liau, M. Y. (1997) Virus Res., 51, 173-181.
    Wu, S. C., Lian, W. C., Hsu, L. C., Wu, Y. C., and Liau, M. Y. (1998) Virus Res., 55, 83-91.
    Xu, W., Harrison, S. C., and Eck, M. J. (1997) Nature, 385, 595-602.
    Yang, W., Malek, S. N., and Desiderio, S. (1995) J. Biol. Chem., 270, 20832-20840.
    Young, K. C., Hana I., Qin Z., Jed, H. D., Richard D. V., and John L. M. (2004) Protein Expression and Purification, 34, 280-283.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE