研究生: |
李奎璋 |
---|---|
論文名稱: |
建立腫瘤缺氧區域的生物雙報導基因造影系統 Establishment of Dual Reporter System for Hypoxic Tumor Imaging |
指導教授: |
江啟勳
Chiang, Chi-Shiun |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 74 |
中文關鍵詞: | 缺氧 、綠色螢光蛋白 、活體冷光影像 、腫瘤 、放射治療 、冷光共振能量轉移 |
外文關鍵詞: | Hypoxia, Hypoxia response element, EGFP, Renilla luciferase, Bioluminescence Resonance Energy Transfer, Pre-irradiated tumor bed effect, Bioluminescence imaging |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於HIF-1大量表現的惡性腫瘤,病人的癒後較差、致死率較高、治療的效果也較差,如能開發早期發現HIF-1表現的非侵入式影像系統,可以提供醫學診斷的依據並可以改變治療程序。本研究在帶有六次重複的hypoxia response element (HRE; 5’-RCGTG-3’)的載體上插入增強型綠色螢光蛋白(Enhanced Green Fluorescent Proteins; EGFP)和Renilla luciferase(Rluc)基因,接著利用liposome轉染到老鼠攝護腺癌細胞(TRAMP-C1)中。體外試驗利用藥物Deferoxamine (DFX)或缺氧無菌培養箱(1% O2、5% CO2、94% N2)24小時刺激,結果顯示TRAMP-EGFP-HRE-Rluc在藥物和缺氧環境24小時刺激下綠色螢光蛋白和冷光訊號相較於未轉染的細胞有明顯的增加。在動物實驗方面,利用Pre-RT動物模式連續4次活體追蹤Rluc在腫瘤內部的表現。結果顯示Pre-RT的冷光訊號和Bioluminescence Resonance Energy Transfer(BRET)比未做任何照射處理的強,最後從腫瘤離體冷光及BRET影像、Rluc活性及流式細胞儀綠色螢光蛋白分析的結果和活體冷光影像相符合。因此我們建立了一套偵測HIF-1的分子影像系統。期望未來這套系統不只應用在偵測上也可應用在基因治療上。
HIF-1 protein over-expressed by malignant tumors is frequently associated with a higher mortality rate and a poor recovery. If a non-invasive system can be developed to detect the expression of HIF-1 at its early stage or during tumor progression or treatment, this may serve as a good reference for medical examination and diagnosis and to help practitioners modify their treatment procedures if necessary. The aim of this research was to contruct a hypoxia response element (HRE; 5'-RCGTG-3') driving vectors simultaneously expressing two reporter proteins, enhanced green fluorescent protein (EGFP) and Renilla luciferase. These reporter vectors were then transfered into a murine prostate cancer cell line, TRAMP-C1. The expression of these reporters were examined in vitro using either hypoxia mimic reagent, deferoxamine (DFX), or hypoxic chamber (1% O2, 5% CO2, 94% N2). After 24 hours of incubation in either condition, we found that both the fluorescence and bioluminescence signals could be dectected in TRAMP-EGFP-HRE-Rluc cells by fluorescent microscopy and bioluminescent assay, respectively. The expression of these vectors in growing tumors was measured by IVIS imaging system. Results showed that tumors growing in pre-irradiated tumor bed has stronger bioluminescence and bioluminescence resonance energy transfer (BRET) than those growing in control tumor bed. The in vivo imagings were verified by ex vivo assay using bioluminescent imaging, BRET imaging, fluorescence analysis by flowcytometer and luminescence analysis. In summary, we have successfully established a non-invasive HIF-1 detection system to monitor the hypoxia development during tumor progression.
參考文獻
1. Krohn, K.A., J.M. Link, and R.P. Mason, Molecular imaging of hypoxia. J Nucl Med, 2008. 49 Suppl 2: p. 129S-48S.
2. Kizaka-Kondoh, S., et al., Tumor hypoxia: a target for selective cancer therapy. Cancer Sci, 2003. 94(12): p. 1021-8.
3. Harris, A.L., Hypoxia--a key regulatory factor in tumour growth. Nat Rev Cancer, 2002. 2(1): p. 38-47.
4. Semenza, G.L., HIF-1 and tumor progression: pathophysiology and therapeutics. Trends Mol Med, 2002. 8(4 Suppl): p. S62-7.
5. Semenza, G.L., Targeting HIF-1 for cancer therapy. Nat Rev Cancer, 2003. 3(10): p. 721-32.
6. Dewhirst, M.W., Y. Cao, and B. Moeller, Cycling hypoxia and free radicals regulate angiogenesis and radiotherapy response. Nat Rev Cancer, 2008. 8(6): p. 425-37.
7. Bertout, J.A., S.A. Patel, and M.C. Simon, The impact of O(2) availability on human cancer. Nat Rev Cancer, 2008. 8(12): p. 967-975.
8. Ke, Q. and M. Costa, Hypoxia-inducible factor-1 (HIF-1). Mol Pharmacol, 2006. 70(5): p. 1469-80.
9. Goldberg, M.A., S.P. Dunning, and H.F. Bunn, Regulation of the erythropoietin gene: evidence that the oxygen sensor is a heme protein. Science, 1988. 242(4884): p. 1412-5.
10. Semenza, G.L., et al., Hypoxia-inducible nuclear factors bind to an enhancer element located 3' to the human erythropoietin gene. Proc Natl Acad Sci U S A, 1991. 88(13): p. 5680-4.
11. Wang, G.L., et al., Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A, 1995. 92(12): p. 5510-4.
12. Bruick, R.K. and S.L. McKnight, A conserved family of prolyl-4-hydroxylases that modify HIF. Science, 2001. 294(5545): p. 1337-40.
13. Jaakkola, P., et al., Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science, 2001. 292(5516): p. 468-72.
14. Kallio, P.J., et al., Regulation of the hypoxia-inducible transcription factor 1alpha by the ubiquitin-proteasome pathway. J Biol Chem, 1999. 274(10): p. 6519-25.
15. Berra, E., et al., HIF-1-dependent transcriptional activity is required for oxygen-mediated HIF-1alpha degradation. FEBS Lett, 2001. 491(1-2): p. 85-90.
16. Lando, D., et al., FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor. Genes Dev, 2002. 16(12): p. 1466-71.
17. Gothie, E., et al., Identification of alternative spliced variants of human hypoxia-inducible factor-1alpha. J Biol Chem, 2000. 275(10): p. 6922-7.
18. Koivunen, P., et al., Catalytic properties of the asparaginyl hydroxylase (FIH) in the oxygen sensing pathway are distinct from those of its prolyl 4-hydroxylases. J Biol Chem, 2004. 279(11): p. 9899-904.
19. Pouyssegur, J., F. Dayan, and N.M. Mazure, Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature, 2006. 441(7092): p. 437-43.
20. Ema, M., et al., A novel bHLH-PAS factor with close sequence similarity to hypoxia-inducible factor 1alpha regulates the VEGF expression and is potentially involved in lung and vascular development. Proc Natl Acad Sci U S A, 1997. 94(9): p. 4273-8.
21. Tian, H., S.L. McKnight, and D.W. Russell, Endothelial PAS domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells. Genes Dev, 1997. 11(1): p. 72-82.
22. Gu, Y.Z., et al., Molecular characterization and chromosomal localization of a third alpha-class hypoxia inducible factor subunit, HIF3alpha. Gene Expr, 1998. 7(3): p. 205-13.
23. Makino, Y., et al., Inhibitory PAS domain protein is a negative regulator of hypoxia-inducible gene expression. Nature, 2001. 414(6863): p. 550-4.
24. Zhong, H., et al., Overexpression of hypoxia-inducible factor 1alpha in common human cancers and their metastases. Cancer Res, 1999. 59(22): p. 5830-5.
25. Talks, K.L., et al., The expression and distribution of the hypoxia-inducible factors HIF-1alpha and HIF-2alpha in normal human tissues, cancers, and tumor-associated macrophages. Am J Pathol, 2000. 157(2): p. 411-21.
26. Iliopoulos, O., et al., Negative regulation of hypoxia-inducible genes by the von Hippel-Lindau protein. Proc Natl Acad Sci U S A, 1996. 93(20): p. 10595-9.
27. Ravi, R., et al., Regulation of tumor angiogenesis by p53-induced degradation of hypoxia-inducible factor 1alpha. Genes Dev, 2000. 14(1): p. 34-44.
28. Zundel, W., et al., Loss of PTEN facilitates HIF-1-mediated gene expression. Genes Dev, 2000. 14(4): p. 391-6.
29. Laughner, E., et al., HER2 (neu) signaling increases the rate of hypoxia-inducible factor 1alpha (HIF-1alpha) synthesis: novel mechanism for HIF-1-mediated vascular endothelial growth factor expression. Mol Cell Biol, 2001. 21(12): p. 3995-4004.
30. Teicher, B.A., J.S. Lazo, and A.C. Sartorelli, Classification of antineoplastic agents by their selective toxicities toward oxygenated and hypoxic tumor cells. Cancer Res, 1981. 41(1): p. 73-81.
31. Gardner, L.B., et al., Hypoxia inhibits G1/S transition through regulation of p27 expression. J Biol Chem, 2001. 276(11): p. 7919-26.
32. Comerford, K.M., et al., Hypoxia-inducible factor-1-dependent regulation of the multidrug resistance (MDR1) gene. Cancer Res, 2002. 62(12): p. 3387-94.
33. Teicher, B.A., et al., Classification of antineoplastic treatments by their differential toxicity toward putative oxygenated and hypoxic tumor subpopulations in vivo in the FSaIIC murine fibrosarcoma. Cancer Res, 1990. 50(11): p. 3339-44.
34. Brown, J.M. and W.R. Wilson, Exploiting tumour hypoxia in cancer treatment. Nat Rev Cancer, 2004. 4(6): p. 437-47.
35. Chapman, J.D., Hypoxic sensitizers--implications for radiation therapy. N Engl J Med, 1979. 301(26): p. 1429-32.
36. Martin, G.V., et al., Enhanced binding of the hypoxic cell marker [3H]fluoromisonidazole in ischemic myocardium. J Nucl Med, 1989. 30(2): p. 194-201.
37. Koh, W.J., et al., Evaluation of oxygenation status during fractionated radiotherapy in human nonsmall cell lung cancers using [F-18]fluoromisonidazole positron emission tomography. Int J Radiat Oncol Biol Phys, 1995. 33(2): p. 391-8.
38. Gross, S. and D. Piwnica-Worms, Spying on cancer: molecular imaging in vivo with genetically encoded reporters. Cancer Cell, 2005. 7(1): p. 5-15.
39. Zipfel, W.R., R.M. Williams, and W.W. Webb, Nonlinear magic: multiphoton microscopy in the biosciences. Nat Biotechnol, 2003. 21(11): p. 1369-77.
40. Bhaumik, S., X.Z. Lewis, and S.S. Gambhir, Optical imaging of Renilla luciferase, synthetic Renilla luciferase, and firefly luciferase reporter gene expression in living mice. J Biomed Opt, 2004. 9(3): p. 578-86.
41. Post, D.E. and E.G. Van Meir, Generation of bidirectional hypoxia/HIF-responsive expression vectors to target gene expression to hypoxic cells. Gene Ther, 2001. 8(23): p. 1801-7.
42. Marignol, L., et al., Achieving hypoxia-inducible gene expression in tumors. Cancer Biol Ther, 2005. 4(4): p. 359-64.
43. Yeom, C.J., et al., Visualization of hypoxia-inducible factor-1 transcriptional activation in C6 glioma using luciferase and sodium iodide symporter genes. J Nucl Med, 2008. 49(9): p. 1489-97.
44. Viola, R.J., et al., In vivo bioluminescence imaging monitoring of hypoxia-inducible factor 1alpha, a promoter that protects cells, in response to chemotherapy. AJR Am J Roentgenol, 2008. 191(6): p. 1779-84.
45. He, F., et al., Noninvasive molecular imaging of hypoxia in human xenografts: comparing hypoxia-induced gene expression with endogenous and exogenous hypoxia markers. Cancer Res, 2008. 68(20): p. 8597-606.
46. Harada, H., S. Kizaka-Kondoh, and M. Hiraoka, Optical imaging of tumor hypoxia and evaluation of efficacy of a hypoxia-targeting drug in living animals. Mol Imaging, 2005. 4(3): p. 182-93.
47. Wen, B., et al., A preclinical model for noninvasive imaging of hypoxia-induced gene expression; comparison with an exogenous marker of tumor hypoxia. Eur J Nucl Med Mol Imaging, 2004. 31(11): p. 1530-8.
48. Liu, J., et al., Real-time imaging of hypoxia-inducible factor-1 activity in tumor xenografts. J Radiat Res (Tokyo), 2005. 46(1): p. 93-102.
49. Fomicheva, E.V., et al., Double oxygen-sensing vector system for robust hypoxia/ischemia-regulated gene induction in cardiac muscle in vitro and in vivo. Mol Ther, 2008. 16(9): p. 1594-601.
50. Kim, H., et al., Engineering human tumor-specific cytotoxic T cells to function in a hypoxic environment. Mol Ther, 2008. 16(3): p. 599-606.
51. Koshikawa, N. and K. Takenaga, Hypoxia-regulated expression of attenuated diphtheria toxin A fused with hypoxia-inducible factor-1alpha oxygen-dependent degradation domain preferentially induces apoptosis of hypoxic cells in solid tumor. Cancer Res, 2005. 65(24): p. 11622-30.
52. Winnard, P.T., Jr., et al., Hypoxia-induced human endonuclease G expression suppresses tumor growth in a xenograft model. Cancer Gene Ther, 2008. 15(10): p. 645-54.
53. Chan, D.A., et al., Coordinate regulation of the oxygen-dependent degradation domains of hypoxia-inducible factor 1 alpha. Mol Cell Biol, 2005. 25(15): p. 6415-26.
54. Iyer, M., et al., Two-step transcriptional amplification as a method for imaging reporter gene expression using weak promoters. Proc Natl Acad Sci U S A, 2001. 98(25): p. 14595-600.
55. Walther, W. and U. Stein, Viral vectors for gene transfer: a review of their use in the treatment of human diseases. Drugs, 2000. 60(2): p. 249-71.