簡易檢索 / 詳目顯示

研究生: 胡佑維
論文名稱: 中孔洞鉑基金屬空心奈米球的製備及其電催化性質之研究
Preparation and Electrocatalytic Studies of Mesoporous Platinum-based Metal Hollow Nanospheres
指導教授: 楊家銘
口試委員: 鄭淑芬
洪嘉呈
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 86
中文關鍵詞: 燃料電池陰極觸媒中孔洞鉑基金屬
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在利用本實驗室合成出之具有Ia3d對稱結構的空心二氧化矽奈米球為模版,製備中孔洞鉑、鉑鈷及鉑鎳合金反結構並研究其電催化氧氣還原反應活性。由於我們的模版具有三維相通孔道及中空結構,可利用此高孔體積的特性,含浸大量金屬前驅物,以氫氣還原法使之還原在中孔洞,移除模版後得到一具中孔洞且高表面積的金屬薄球殼,克服了傳統上無法完整複製模版外觀形貌的問題。在鉑金屬反結構,我們以熔融態方式一步驟大量含浸前驅物,再以低溫還原成功複製完整反結構,而鉑鈷及鉑鎳合金方面,我們以初濕含浸法均勻分散前驅物,還原後可得合金反結構。在此以X光粉末繞射儀、物理吸脫附儀、掃描式和穿透式電子顯微鏡對結構與形貌進行分析,並以X光吸收光譜了解鉑金屬還原過程,最後藉由伏安法了解氧氣還原反應催化活性。結果顯示中孔洞鉑基金屬空心奈米球相較於商用觸媒碳載體白金及鉑黑有更佳之活性與穩定性。


    In this study, we used the mesoporous silica hollow spheres with Ia3d symmetry as template which was developed by our lab to synthesize mesoporous Platinum and Platinum-based alloy hollow spheres and apply it to oxygen reduction reaction (ORR). Traditionally, the template synthesis cannot make a complete replication of mesoporous silica. We solve the problem because our template has the property of high pore volume and hollow core and we could replicate template morphology completely by impregnating large quantity metal precursor and hydrogen reduction. In the Pt replica, we successfully synthesized by one step impregnating large quantity molted metal precursor and low temperature reduction. In the Pt-based alloy replica, we used incipient wetness impregnation to homogenize mixtures of the precursors and got alloy replica after reduction. The template and metal hollow spheres was characterized by X-ray diffraction, nitrogen physisorption, scanning electron microscopy, transmission electron microscopy and X-ray absorption spectroscopy. Finally, the replicas as catalysts were test by voltammetry. We found that the mesoporous Platinum and Platinum-based alloy hollow spheres have higher ORR catalytic activity and stability than the commercial carbon support platinum and platinum black catalysts.

    第一章 緒論 1 1-1 燃料電池簡介 1 1-2 質子交換膜型燃料電池簡介 3 1-2-1 氫燃料電池 4 1-2-2 甲醇燃料電池 5 1-2-3 甲酸燃料電池 6 1-2-4 乙醇燃料電池 7 1-3 質子交換膜燃料電池陰極觸媒材料 8 1-3-1 陰極觸媒催化機制 10 1-3-2 觸媒材料發展 14 1-4 無載體奈米金屬材料 20 1-4-1 中孔洞金屬材料 24 1-4-2 硬模版法 25 1-5 研究動機 28 第二章 實驗部分 29 2-1 實驗藥品 29 2-2 MCM-48 type空心奈米球的製備 30 2-3 中孔洞空心鉑、鉑鈷、鉑鎳球反結構合成 31 2-3-1 中孔洞空心鉑球反結構 31 2-3-2中孔洞空心鉑鈷、鉑鎳球反結構 31 2-4 儀器鑑定與分析 32 2-4-1 X光粉末繞射儀 32 2-4-2 物理吸脫附儀 33 2-4-3 掃描式電子顯微鏡 35 2-4-4 穿透式電子顯微鏡 35 2-4-5 X光吸收光譜 35 2-4-6 伏安法 36 第三章 結果與討論 41 3-1 中孔洞空心奈米球合成與鑑定 41 3-2 中孔洞空心鉑球反結構合成與鑑定 45 3-2-1 X光吸收光譜 54 3-3 中孔洞空心鉑鈷、鉑鎳反結構合成與鑑定 60 3-3-1 鉑鎳反結構 69 3-4 電化學分析 71 3-4-1 循環伏安圖 71 3-4-2 線性伏安圖 74 3-4-3 穩定性測試 77 第四章 結論 81 第五章 參考文獻 82

    [1] PEM Fuel Cell Electrocatalysts and Catalyst Layers Fundamentals and Applications; Zhang, J., Ed.; Springer, 2008.
    [2] The. US Department of Energy (DOE). Energy Efficiency and Renewable Energy.
    [3] R., R. T.; P., H. M. Platin. Met. Rev. 2002, 46, 117.
    [4] Jusys, Z.; Kaiser, J.; Behm, R. J. Electrochim. Acta 2002, 47, 3693.
    [5] Liu, H. S.; Song, C. J.; Zhang, L.; Zhang, J. J.; Wang, H. J.; Wilkinson, D. P. J. Power Sources 2006, 155, 95.
    [6] Demirci, U. B. J. Power Sources 2007, 169, 239.
    [7] Rice, C.; Ha, S.; Masel, R. I.; Waszczuk, P.; Wieckowski, A.; Barnard, T. J. Power Sources 2002, 111, 83.
    [8] Yu, X.; Pickup, P. G. J. Power Sources 2008, 182, 124.
    [9] Wang, H.; Jusys, Z.; Behm, R. J. J. Phys. Chem. B 2004, 108, 19413.
    [10] Tsiakaras, P. E. J. Power Sources 2007, 171, 107.
    [11] Kavanagh, R.; Cao, X.-M.; Lin, W.-F.; Hardacre, C.; Hu, P. Angew. Chem. Int. Ed. 2012, 51, 1572.
    [12] PEM Fuel cells: Theory and Practice; Barbir, F., Ed.; Elsevier, 2005.
    [13] Wroblowa, H.; Pan, Y. C.; Razumney, J. J. Electroanal. Chem. 1976, 69, 195.
    [14] Vielstich, W.; Lamm, A.; Gasteiger, H. A. Handbook of Fuel Cells: Fundamentals, Technology, Applications; Wiley, 2003.
    [15] Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L. J. Phys. Chem. B 2004, 108, 17886.
    [16] Ruban, A. V.; L., S. H.; Nørskov, J. K. Phys. Rev. B 1999, 59, 1590.
    [17] Xu, Y.; Ruban, A. V.; Mavrikakis, M. J. Am. Chem. Soc. 2004, 126 4717.
    [18] Kitchin, J. R.; Nørskov, J. K.; Barteau, M. A.; Chen, J. G. J. Chem. Phys. 2004, 120, 10240.
    [19] Toda, T.; Igarashi, H.; Uchida, H.; Watanabe, M. J. Electrochem. Soc. 1999, 146, 3750.
    [20] Strabac, S.; A., A. N.; Adzic, R. R. Electrochim. Acta 1994, 39, 983.
    [21] Markovic, N. M.; Ross, P. N. Surf. Sci. Rep. 2002, 45, 117.
    [22] Kuzume, A.; Herrero, E.; Feliu, J. M. J. Electroanal. Chem. 2007, 599, 333.
    [23] Mukerjee, S.; Srinivasan, S.; Soriaga, M. P. J. Electroanal. Chem. 1995, 142, 1409.
    [24] Stamenkovic, V.; Mun, B. S.; Mayrhofer, K. J. J.; Ross, P. N.; Markovic, N. M.; Rossmeisl, J.; Greeley, J.; Nørskov, J. K. Angew. Chem. Int. Ed. 2006, 45, 2897.
    [25] Papageorgopoulos, D.; Annual Merit Review and Peer Evaluation Meeting: 2011.
    [26] Morozan, A.; Jousselme, B.; Palacin, S. Energy Environ. Sci. 2011, 4, 1238.
    [27] Jasinski, R. Nature 1964, 201, 1212.
    [28] Bezerra, C. W. B.; Zhang, L.; Lee, K.; Liu, H.; Zhang, J.; Shi, Z.; Marques, A. L. B.; Marques, E. P.; Wu, S.; Zhang, J. Electrochim. Acta 2008, 53, 7703.
    [29] Liu, G.; Li, X.; Ganesan, P.; Popov, B. N. Appl. Catal. B-Environ. 2009, 93, 156.
    [30] Marković, N. M.; Adžića, R. R.; Cahanb, B. D.; Yeager, E. B. J. Electroanal. Chem. 1994, 377, 249.
    [31] Balbuena, P. B.; Altomare, D.; Vadlamani, N.; Bingi, S.; Agapito, L. A.; Seminario, J. M. J. Phys. Chem. A 2004, 180, 6378.
    [32] Colón-Mercado, H. R.; Kim, H.; Popov, B. N. Electrochem. Commun. 2004, 6, 795.
    [33] Xiong, L.; Manthiram, A. J. Electrochem. Soc. 2005, 152, A697.
    [34] Colon-Mercado, H. R.; Popov, B. N. J. Power Sources 2006, 155, 253.
    [35] Stamenkovic, V. R.; Fowler, B.; Mun, B. S.; Wang, G.; Ross, P. N.; Lucas, C. A.; Markovic, N. M. Science 2007, 315, 493.
    [36] Zhang, J.; Yang, H.; Fang, J.; Zou, S. Nano Lett. 2010, 10, 638.
    [37] Hwang, S. J.; Yoo, S. J.; Jang, S.; Lim, T.-H.; Hong, S. A.; Kim, S.-K. J. Phys. Chem. C 2011, 115, 2483.
    [38] Loukrakpam, R.; Wanjala, B. N.; Yin, J.; Fang, B.; Luo, J.; Shao, M.; Protsailo, L.; Kawamura, T.; Chen, Y.; Petkov, V.; Zhong, C.-J. ACS Catal. 2011, 1, 562.
    [39] Zhang, J.; Lima, F. H. B.; Shao, M. H.; Sasaki, K.; Wang, J. X.; Hanson, J.; Adzic, R. R. J. Phys. Chem. B 2005, 109, 22701.
    [40] Yang, J.; Lee, J. Y.; Zhang, Q.; Zhou, W.; Liu, Z. J. Electrochem. Soc. 2008, 155, B776.
    [41] Li, Y.; Wang, Z. W.; Chiu, C.-Y.; Ruan, L.; Yang, W.; Yang, Y.; Palmer, R. E.; Huang, Y. Nanoscale 2012, 4, 845.
    [42] Chen, Y.; Yang, F.; Dai, Y.; Wang, W.; Chen, S. J. Phys. Chem. C 2008, 112 1645.
    [43] Zhai, J.; Huang, M.; Dong, S. Electroanalysis 2007, 19, 506.
    [44] Vismadeb Mazumder, M. C., Karren L. More, and Shouheng Sun J. Am. Chem. Soc. 2010, 132, 7848.
    [45] Wang, C.; van der Vliet, D.; More, K. L.; Zaluzec, N. J.; Peng, S.; Sun, S.; Daimon, H.; Wang, G.; Greeley, J.; Pearson, J.; Paulikas, A. P.; Karapetrov, G.; Strmcnik, D.; Markovic, N. M.; Stamenkovic, V. R. Nano Lett. 2011, 11, 919.
    [46] Bing, Y.; Liu, H.; Zhang, L.; Ghosh, D.; Zhang, J. Chem. Soc. Rev. 2010, 39, 2184.
    [47] Shao-Horn, Y.; Sheng, W. C.; Chen, S.; Ferreira, P. J.; Holby, E. F.; Morgan, D. Top. Catal. 2007, 46, 285.
    [48] Ho, V. T. T.; Pan, C.-J.; Rick, J.; Su, W.-N.; Hwang, B.-J. J. Am. Chem. Soc. 2011, 133, 11716.
    [49] Chen, Z.; Waje, M.; Li, W.; Yan, Y. Angew. Chem. Int. Ed. 2007, 46, 4060.
    [50] Liang, H.-W.; Cao, X.; Zhou, F.; Cui, C.-H.; Zhang, W.-J.; Yu, S.-H. Adv. Mater. 2011, 23, 1467.
    [51] Tan, Y.; Fan, J.; Chen, G.; Zheng, N.; Xie, Q. Chem. Commun. 2011, 47, 11624.
    [52] Shui, J.; Li, J. C. M. Nano Lett. 2009, 9, 1307.
    [53] Lim, B.; Jiang, M.; Camargo, P. H. C.; Cho, E. C.; Tao, J.; Lu, X.; Zhu, Y.; Xia, Y. Science 2009, 324, 1302.
    [54] Lim, B.; Jiang, M.; Yu, T.; Camargo, P. H. C.; Xia, Y. Nano Res. 2010, 3, 69.
    [55] Wang, H.-H.; Zhou, Z.-Y.; Yuan, Q.; Tian, N.; Sun, S.-G. Chem. Commun. 2011, 47, 3407.
    [56] Xu, Y.; Hou, S.; Liu, Y.; Zhang, Y.; Wang, H.; Zhang, B. Chem. Commun. 2012, 48, 2665.
    [57] Sun, S. H.; Zhang, G. X.; Geng, D. S.; Chen, Y. G.; Li, R. Y.; Cai, M.; Sun, X. L. Angew. Chem. Int. Ed. 2011, 50, 422.
    [58] Chen, H. M.; Liu, R.-S.; Lo, M.-Y.; Chang, S.-C.; Tsai, L.-D.; Peng, Y.-M.; Lee, J.-F. J. Phys. Chem. C 2008, 112, 7522.
    [59] Alia, S. M.; Zhang, G.; Kisailus, D.; Li, D. S.; Gu, S.; Jensen, K.; Yan, Y. S. Adv. Funct. Mater. 2010, 20, 3742.
    [60] Saramat, A.; Thormahlen, P.; Skoglundh, M.; Attard, G. S.; Palmqvist, A. E. C. J. Catal. 2008, 253, 253.
    [61] Wang, H.; Jeong, H. Y.; Imura, M.; Wang, L.; Radhakrishnan, L.; Fujita, N.; Castle, T.; Terasaki, O.; Yamauchi, Y. J. Am. Chem. Soc. 2011, 133, 14526.
    [62] Bauer, A.; Wilkinson, D. P.; Gyenge, E. L.; Bizzotto, D.; Ye, S. J. Electrochem. Soc. 2009, 156, B1169.
    [63] Kucernak, A.; Jiang, J. H. Chem. Eng. J. 2003, 93, 81.
    [64] Ghanem, M. A. Electrochem. Commun. 2007, 9, 2501.
    [65] Han, J. H.; Choi, H. N.; Park, S.; Chung, T. D.; Lee, W. Y. Anal. Sci. 2010, 26, 995.
    [66] Attard, G. S.; Goltner, C. G.; Corker, J. M.; Henke, S.; Templer, R. H. Angew. Chem. Int. Ed. 1997, 36, 1315.
    [67] Attard, G. S.; Bartlett, P. N.; Coleman, N. R. B.; Elliott, J. M.; Owen, J. R.; Wang, J. H. Science 1997, 278, 838.
    [68] Shi, Y.; Wan, Y.; Zhao, D. Chem. Soc. Rev. 2011, 40, 3854.
    [69] Yamauchi, Y.; Kuroda, K. Chem.-Asian J. 2008, 3, 664.
    [70] Yanagisawa, T.; Shimizu, T.; Kuroda, K.; Kato, C. Bull. Chem. Soc. Jpn. 1990, 63, 988.
    [71] Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T. W.; Olson, D. H.; Sheppard, E. W.; McCullen, S. B.; Higgins, J. B.; Schlenker, J. L. J. Am. Chem. Soc. 1992, 114, 10834.
    [72] Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S. Nature 1992, 359, 710.
    [73] Raman, N. K.; Anderson, M. T.; Brinker, C. J. Chem. Mat. 1996, 8, 1682.
    [74] Hoffmann, F.; Cornelius, M.; Morell, J.; Froba, M. Angew. Chem. Int. Ed. 2006, 45, 3216.
    [75] Han, Y. J.; Kim, J. M.; Stucky, G. D. Chem. Mat. 2000, 12, 2068.
    [76] Liu, Z.; Sakamoto, Y.; Ohsuna, T.; Hiraga, K.; Terasaki, O.; Ko, C. H.; Shin, H. J.; Ryoo, R. Angew. Chem. Int. Ed. 2000, 39, 3107.
    [77] Shin, H. J.; Ryoo, R.; Liu, Z.; Terasaki, O. J. Am. Chem. Soc. 2001, 123, 1246.
    [78] Sasaki, M.; Osada, M.; Sugimoto, N.; Inagaki, S.; Fukushima, Y.; Fukuoka, A.; Ichikawa, M. Microporous Mesoporous Mat. 1998, 21, 597.
    [79] Sasaki, M.; Osada, M.; Higashimoto, N.; Yamamoto, T.; Fukuoka, A.; Ichikawa, M. J. Mol. Catal. A-Chem. 1999, 141, 223.
    [80] Wang, D. H.; Jakobson, H. P.; Kou, R.; Tang, J.; Fineman, R. Z.; Yu, D. H.; Lu, Y. F. Chem. Mat. 2006, 18, 4231.
    [81] Takai, A.; Ataee-Esfahani, H.; Doi, Y.; Fuziwara, M.; Yamauchi, Y.; Kuroda, K. Chem. Commun. 2011, 47, 7701.
    [82] Li, H.; Shi, J. L.; Li, L.; Gu, J. L.; Zhang, L. X.; Chen, H. R.; Shi, W. Chem. Lett. 2005, 34, 210.
    [83] Doi, Y.; Takai, A.; Sakamoto, Y.; Terasaki, O.; Yamauchi, Y.; Kuroda, K. Chem. Commun. 2010, 46, 6365.
    [84] Takai, A.; Doi, Y.; Yamauchi, Y.; Kuroda, K. Chem.-Asian J. 2011, 6, 881.
    [85] Fukuoka, A.; Higashimoto, N.; Sakamoto, Y.; Inagaki, S.; Fukushima, Y.; Ichikawa, M. Microporous Mesoporous Mat. 2001, 48, 171.
    [86] Jiang, J.; Kucernak, A. Electrochem. Commun. 2009, 11, 623.
    [87] Liu, C.; Tan, R.; Yu, N.; Yin, D. Microporous Mesoporous Mat. 2010, 131, 162.
    [88] Yang, C. M.; Sheu, H. S.; Chao, K. J. Adv. Funct. Mater. 2002, 12, 143.
    [89] Yang, C. M.; Liu, P. H.; Ho, Y. F.; Chiu, C. Y.; Chao, K. J. Chem. Mat. 2003, 15, 275.
    [90] Fukuoka, A.; Higuchi, T.; Ohtake, T.; Oshio, T.; Kimura, J.; Sakamoto, Y.; Shimomura, N.; Inagaki, S.; Ichikawa, M. Chem. Mat. 2006, 18, 337.
    [91] Lee, S. J.; Pyun, S. I.; Lee, S. K.; Kang, S. J. L. Isr. J. Chem. 2008, 48, 215.
    [92] Thommes, M.; Kohn, R.; Froba, M. In Characterization of Porous Solids V; Unger, K. K. K. G. B. J. P., Ed. 2000; Vol. 128, p 259.
    [93] Feng, Z.; Li, Y.; Niu, D.; Li, L.; Zhao, W.; Chen, H.; Li, L.; Gao, J.; Ruan, M.; Shi, J. Chem. Commun. 2008, 2629.
    [94] Li, J.; Liu, J.; Wang, D.; Guo, R.; Li, X.; Qi, W. Langmuir 2010, 26, 12267.
    [95] Boujday, S.; Lehman, J.; Lambert, J. F.; Che, M. Catal. Lett. 2003, 88, 23.
    [96] Ahmadi, T. S.; Wang, Z. L.; Green, T. C.; Henglein, A.; ElSayed, M. A. Science 1996, 272, 1924.
    [97] Solovyov, L. A.; Zaikovskii, V. I.; Shmakov, A. N.; Belousov, O. V.; Ryoo, R. J. Phys. Chem. B 2002, 106, 12198.
    [98] Sinfelt, J. H.; Meitzner, G. D. Accounts Chem. Res. 1993, 26, 1.
    [99] Chao, K. J.; Chang, Y. P.; Chen, Y. C.; Lo, A. S.; Phan, T. H. J. Phys. Chem. B 2006, 110, 1638.
    [100] Jentys, A. Phys. Chem. Chem. Phys. 1999, 1, 4059.
    [101] Denton, A. R.; Ashcroft, N. W. Phys. Rev. A 1991, 43, 3161.
    [102] Solla-Gullon, J.; Rodriguez, P.; Herrero, E.; Aldaz, A.; Feliu, J. M. Phys. Chem. Chem. Phys. 2008, 10, 1359.
    [103] Subbaraman, R.; Strmcnik, D.; Stamenkovic, V.; Markovic, N. M. J. Phys. Chem. C 2010, 114, 8414.
    [104] Mukerjee, S.; Srinivasan, S. J. Electroanal. Chem. 1993, 357, 201.
    [105] Han, J.-H.; Lee, E.; Park, S.; Chang, R.; Chung, T. D. J. Phys. Chem. C 2010, 114, 9546.
    [106] Wang, H.; Wang, L.; Sato, T.; Sakamoto, Y.; Tominaka, S.; Miyasaka, K.; Miyamoto, N.; Nemoto, Y.; Terasaki, O.; Yamauchi, Y. Chem. Mat. 2012, 24, 1591.
    [107] Kibsgaard, J.; Gorlin, Y.; Chen, Z.; Jaramillo, T. F. J. Am. Chem. Soc. 2012, 134, 7758.
    [108] Shui, J.-I.; Chen, C.; Li, J. C. M. Adv. Funct. Mater. 2011, 21, 3357.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE