研究生: |
周珮涵 Chou, Pei-Han |
---|---|
論文名稱: |
以功率硬體迴路平台實現適用於微電網電力轉換器無縫轉換 Power Hardware-in-the-Loop Study for Seamless Transition of Power Converters in Microgrids |
指導教授: |
朱家齊
Chu, Chia-Chi |
口試委員: |
連國龍
Lian, Kuo-Lung 吳有基 Wu, Yu-Chi |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 英文 |
論文頁數: | 66 |
中文關鍵詞: | 主動式孤島偵測 、功率硬體迴路 、無縫轉換 、即時模擬器 、鎖頻迴路 |
外文關鍵詞: | Active islanding detection method, Power hardware-in-the-loop, Seamless transition, Real-time simulator, frequency-locked loop |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文提出了一種使用功率硬體迴路(PHIL)平台實現微電網功率轉換器之無縫轉換的方法。在系統模型中,使用回授電流濾波法(FCF)增加系統穩定性,並使用三相二階功率轉換器作為開關模式放大器,以便將即時模擬器中虛擬電網的電壓訊號放大到實際硬體上,使微電網中的功率轉換器能夠進行控制。在孤島偵測實驗中,使用正回授自動相移法(APS)作為孤島偵測法,並分別使用SOGI-FLL、DSOGI-FLL以及ROGI-FLL作為鎖頻迴路(FLL),比較不同電網條件下不同GI-FLL的鎖頻情形。
在孤島實驗期間的模式轉換,我們使用無縫轉換,使系統在安全的情況下進行切換。並且設計了一種同步機制,使系統在進入孤島模式後,VSC能自動與修復完成的公用電同步,並且在系統修復完成後能夠順利切換回併網模式。最後,透過Matlab/Simulink模擬驗證方法之可行性,並使用OP5600即時模擬器和DSP28335進行硬體驗證。
This thesis presents a technique for achieving seamless transition of power converters in microgrid using a Power Hardware-in-the-Loop (PHIL) platform. The system model employs a feedback current filtering approach (FCF) to enhance the entire system stability, and uses a three-phase two-level power converter as a switch-mode amplifier, enabling the voltage signal of the virtual power grid in the real-time simulator to be amplified to the physical hardware, thus enabling control of the power converter within the microgrid. The islanding detection experiments utilize a positive feedback automatic phase-shift method (APS) for islanding detection and employs SOGI-FLL, DSOGI-FLL, or ROGI-FLL as frequency-locked loop (FLL) respectively to evaluate the locked frequency under various grid conditions.
In the course of islanding experiments, we employ a seamless transition strategy. A synchronization mechanism is also devised to enable the power converter to be automatically synchronized with the restored grid upon reaching the islanded mode, and smoothly transition back to the grid-connected mode once the main power grid is restored. The proposed approach is validated using Matlab/Simulink, and through hardware experiments on the OP5600 real-time simulator, and the DSP28335.
[1] K. Jha, S. Mishra, and A. Joshi, “Boost-amplifier-based power-hardware-inthe-loop simulator,” IEEE Transactions on Industrial Electronics, vol. 62,no. 12, pp. 7479–7488, 2015.
[2] M. Pokharel and C. N. M. Ho, “Stability analysis of power hardware-inthe-loop architecture with solar inverter,” IEEE Transactions on Industrial Electronics, vol. 68, no. 5, pp. 4309–4319, 2021.
[3] S. Lentijo, S. D’Arco, and A. Monti, “Comparing the dynamic performances of power hardware-in-the-loop interfaces,” IEEE Transactions on Industrial Electronics, vol. 57, no. 4, pp. 1195–1207, 2010.
[4] M. Kim, S.-K. Kwak, K. A. Kim, and J.-H. Jung, “Enhanced computation
performance of photovoltaic models for power hardware-in-the-loop simulation,” IEEE Transactions on Industrial Electronics, vol. 68, no. 8, pp. 6952–6961, 2021.
[5] X. H. Mai, S.-K. Kwak, J.-H. Jung, and K. A. Kim, “Comprehensive electricthermal photovoltaic modeling for power-hardware-in-the-loop simulation (phils) applications,” IEEE Transactions on Industrial Electronics, vol. 64, no. 8, pp. 6255–6264, 2017.
[6] “Ieee standard for interconnection and interoperability of distributed energy resources with associated electric power systems interfaces,” IEEE Std 1547-2018 (Revision of IEEE Std 1547-2003), pp. 1–138, 2018.
[7] C. Li, C. Cao, Y. Cao, Y. Kuang, L. Zeng, and B. Fang, “A review of islanding detection methods for microgrid,” Renewable and Sustainable Energy Reviews, vol. 35, pp. 211–220, 2014.
[8] S. C. Gulipalli, Y.-M. Chen, T.-I. Liu, and C.-C. Chu, “Frequency-locked loop based new automatic phase-shift method for active islanding detection of three-phase microgrid,” in 2022 IEEE Industry Applications Society Annual Meeting (IAS), 2022, pp. 1–7.
[9] H. Liu, W. Zhang, B. Sun, P. C. Loh, W. Wang, D. Xu, and F. Blaabjerg,“Seamless transfer scheme with unified control core for paralleled systems,” IEEE Transactions on Power Electronics, vol. 34, no. 7, pp. 6286–6298, 2019.
[10] A. F. Hoke, A. Nelson, S. Chakraborty, F. Bell, and M. McCarty, “An islanding detection test platform for multi-inverter islands using power hil,” IEEE Transactions on Industrial Electronics, vol. 65, no. 10, pp. 7944–7953, 2018.
[11] C. Yin, B. Ye, X. Wang, and L. Dai, “Power hardware-in-the-loop simulation of a distributed generation system connected to a weak grid,” in 2017 IEEE Conference on Energy Internet and Energy System Integration (EI2), 2017, pp. 1–6.
[12] W. Ren, “Accuracy evaluation of power hardware-in-the-loop (phil) simulation,” Ph.D. dissertation, The Florida State University, 2007.
[13] G. F. Lauss, M. O. Faruque, K. Schoder, C. Dufour, A. Viehweider, and
J. Langston, “Characteristics and design of power hardware-in-the-loop simulations for electrical power systems,” IEEE Transactions on Industrial Electronics, vol. 63, no. 1, pp. 406–417, 2016.
[14] L.-Y. Lu, J.-H. H. Liu, and C.-C. Chu, “Distributed real-time simulation and on-site development of a micro-grid with renewable energy sources,” in 2012 IEEE Power and Energy Society General Meeting, 2012, pp. 1–7.
[15] G. Lauss and K. Strunz, “Multirate partitioning interface for enhanced stability of power hardware-in-the-loop real-time simulation,” IEEE Transactions on Industrial Electronics, vol. 66, no. 1, pp. 595–605, 2019.
[16] S. Resch, J. Friedrich, T. Wagner, G. Mehlmann, and M. Luther, “Stability analysis of power hardware-in-the-loop simulations for grid applications,” Electronics, vol. 11, no. 1, p. 7, 2021.
[17] G. Lauss and K. Strunz, “Accurate and stable hardware-in-the-loop (hil) realtime simulation of integrated power electronics and power systems,” IEEE Transactions on Power Electronics, vol. 36, no. 9, pp. 10 920–10 932, 2021.
[18] G. Lauss, F. Lehfus, A. Viehweider, and T. Strasser, “Power hardware in the loop simulation with feedback current filtering for electric systems,” in IECON 2011-37th Annual Conference of the IEEE Industrial Electronics Society. IEEE, 2011, pp. 3725–3730.
[19] I. S. Millah, P. C. Chang, D. F. Teshome, R. K. Subroto, K. L. Lian, and J.-F. Lin, “An enhanced grey wolf optimization algorithm for photovoltaic maximum power point tracking control under partial shading conditions,” IEEE Open Journal of the Industrial Electronics Society, vol. 3, pp. 392–408, 2022.
[20] R. Teodorescu, M. Liserre, and P. Rodriguez, Grid converters for photovoltaic and wind power systems. John Wiley & Sons, 2011. [21] Q. Sun, J. M. Guerrero, T. Jing, J. C. Vasquez, and R. Yang, “An islanding detection method by using frequency positive feedback based on fll for singlephase microgrid,” IEEE Transactions on Smart Grid, vol. 8, no. 4, pp. 1821–1830, 2017.
[22] P. Rodr´ıguez, A. Luna, R. S. Mu˜noz-Aguilar, I. Etxeberria-Otadui, R. Teodorescu, and F. Blaabjerg, “A stationary reference frame grid synchronization system for three-phase grid-connected power converters under adverse grid conditions,” IEEE Transactions on Power Electronics, vol. 27, no. 1, pp. 99–112, 2012.
[23] A. J. Wang, B. Y. Ma, and C. X. Meng, “A frequency-locked loop technology of three-phase grid-connected inverter based on improved reduced order generalized integrator,” in 2015 IEEE 10th Conference on Industrial Electronics and Applications (ICIEA), 2015, pp. 730–735.