研究生: |
李昀庭 Li, Yun-Ting |
---|---|
論文名稱: |
蛋白質奈米磁性殼核膠囊製備與特性探討 Preparation and Characteristics of Magnetic Nano Core-shell Capsules |
指導教授: |
胡尚秀
Hu, Shang-Hsiu |
口試委員: |
張建文
Chang, Chien-Wen 姜文軒 Chiang, Wen-Hsuan |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 英文 |
論文頁數: | 33 |
中文關鍵詞: | 奈米氧化鐵 、牛血清蛋白 、奈米膠囊 |
外文關鍵詞: | Iron oxide nanoparticles, Bovine serum albumin (BSA), Nanpcapsules |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
奈米藥物傳輸系統除了增強療效及降低藥物副作用外,更著重在提升生物相容性與多功能性。使用天然的分子作為藥物載體,可減少免疫反應及肝臟代謝的負擔。另外,功能性藥物載體則可整合標靶(Target therapy)、磁控(Magnetic guidance)、刺激釋放及合併治療(熱療、化療及免疫療法等…)來增強療效。在此研究中,開發一種蛋白質奈米磁性殼核膠囊,其中,以血液中重要的成分血清白蛋白作為藥物載體的基材(本研究中使用牛血清蛋白(Bovine serum albumin (BSA)),增強載體的生物相容性。為了使得藥物載體達到奈米化,我們先以熱裂解法合成油相的奈米氧化鐵(Iron Oxide Nanoparticles (IOP)),並藉由BSA作為水相界面活性劑乳化製成,達到一步驟水/油/水(Water-in-oil-in-water)的奈米穩定結構,並在本結構中,可直接穩定包覆氧化鐵奈米粒子。由於包覆磁性粒子,因此可藉由高週波(High frequency magnetic filed, HFMF)驅動載體生熱,達到熱療的目的。另外,由於蛋白質結構易受酸鹼與熱影響,本研究中也發現,在不同環境下,載體會產生聚集現象(Aggregation transition),期盼未來能夠有機會使用在自發性腫瘤標靶治療上。
Combination therapy is a very powerful approach to fight cancer disease that not only induce cancer cell death but also modulates the complex tumor microenvironment. Except for choice of multiple therapy combination, the more difficulty is how to take co-treatment to reach the synergistic therapeutic effects in a simple way.
In this study, we provide a new class of nano-hollow-capsules that can achieve magneto-thermal- and chemo- therapy in one system to kill cancerous cells effectively. The design is prepared by single-emulsion that assemble bovine serum albumin (BSA) and iron oxide nanoparticles (IOPs) into one BSA-based magnetic capsules (BSA@IOP capsule). Such hollow capsules with nanoscale enable carrying both hydrophobic and hydrophilic drugs spontaneously. The BSA@IOP capsule is anticipated accumulate in tumor directly through enhanced permeability and retention effect (EPR effect). Subsequently, IOPs of BSA@IOP capsule were actuated by high frequency magnetic field (HFMF), causing temperature rise of microenvironment and lead to bovine serum albumin (BSA) denature, which makes drug release, capsules collapse adhesion together. In this chemo-thermotherapy approach, thermotherapy is active in treating local cancer at the primary site and chemotherapy is effective in secondary treating.
These nano-hollow-capsules are bio-degradable and bio-eliminable after drug release had been triggered. These results demonstrate that the BSA@IOP capsule is an excellent new delivery platform for local, on-demand, magneto-responsive, pH-responsive combined chemotherapy/hyperthermia for tumor treatments and other biomedical applications.
1. Sun S., Zeng H., Robinson D. B., Raoux S., Rice P. M., Wang S. X., Li G., Monodisperse MFe2O4 (M = Fe, Co, Mn) Nanoparticles. J. Am. Chem. Soc. 2004, 126, 1, 273-279
2. Shi J., Votruba A.R., Farokhzad O. C., Langer R., Nanotechnology in Drug Delivery and Tissue Engineering: From Discovery to Applications. Nano Lett. 2010, 10 (9), 3223–3230.
3. Vlasova, I. M., & Saletsky, A. M. Study of the denaturation of human serum albumin by sodium dodecyl sulfate using the intrinsic fluorescence of albumin. Journal of Applied Spectroscopy, 2009, 76(4), 536–541.
4. Lee, E. S., & Youn, Y. S. Albumin‐based potential drugs: Focus on half‐life extension and nanoparticle preparation. Journal of Pharmaceutical Investigation, 2016, 46(4), 305–315.
5. Kratz F., Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles. Journal of Controlled Release. 2008, 132(3):171-181
6. Brule S, Levy M, Wilhelm C, Letourneur D, Gazeau F, Ménager C, Le Visage C, Doxorubicin release triggered by alginate embedded magnetic nanoheaters: a combined therapy. Adv Mater. 2011, 23:787-90
7. Liu H, Chen D, Li L, Liu T, Tan L, Wu X, Tang F, Multifunctional gold nanoshells on silica nanorattles: a platform for the combination of photothermal therapy and chemotherapy with low systemic toxicity. Angew Chem Int Ed Engl. 2011, 50:891–95.
8. Long NV, Yang Y, Teranishi T, Thi CM, Cao Y, Nogami M., Biomedical applications of advanced multifunctional magnetic nanoparticles. J Nanosci Nanotechnol, 2015, 15:10091–107
9. Mohammed L, Ragab D, Gomaa H, Bioactivity of hybrid polymeric magnetic nanoparticles and their applications in drug delivery. Curr Pharm Des, 2016, 22:3332–52.
10. Oliveira H, Pérez-Andrés E, Thevenot J, Sandre O, Berra E, Lecommandoux S. Magnetic field triggered drug release from polymersomes for cancer therapeutics. J Control Release, 2013, 169:165-70
11. Satarkar NS, Hilt JZ. Magnetic hydrogel nanocomposites for remote controlled pulsatile drug release. J Control Release, 2008, 130:246-51.
12. Jordan A, Maier-Hauff K, Wust P, Johannsen M. Nanoparticles for thermotherapy In: Nanomaterials for cancer therapy. Weinheim, 2006, Germany: VCH.
13. Mitragotri S., Burke P. A., Langer R., Overcoming the challenges in administering biopharmaceuticals: formulation and delivery strategies. Nat Rev Drug Discov. 2014, 13, 655-672.
14. J.W. Yoo, D.J. Irvine, D.E. Discher, S. Mitragotri, Bio-inspired, bioengineered and biomimetic drug delivery carriers. Nat. Rev. Drug Discov. 2011, 10 (7), 521-535.
15. G Mani Subramanian, Michele Fiscella, Araba Lamousé-Smith, Stefan Zeuzem & John G McHutchison, Albinterferon α-2b: a genetic fusion protein for the treatment of chronic hepatitis C. Nature Biotechnology 2007, 25, 1411-1419.
16. V. K. Rustgi, Albinterferon alfa-2b, Albinterferon alfa-2b, a novel fusion protein of human albumin and human interferon alfa-2b, for chronic hepatitis C. Curr. Med. Res. Opin.. 2009, 25, 991-1002.
17. F. Kratz, “Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles,” Journal of Controlled Release, vol. 132, no. 3, pp. 171–181, 2008.
18. Park, J. et al. Combination delivery of TGF inhibitor and IL-2 by nanoscale liposomal polymeric gels enhances tumour immunotherapy. Nature Mater. 11, 895-905 (2012)
19. Z. Mei, A. Dhanale, A. Gangaharan, D. K. Sardar, L. Tang, Water dispersion of magnetic nanoparticles with selective Biofunctionality for enhanced plasmonic biosensing Talanta. 2016, 1, 23-29.
20. A. Akbarzadeh, M. Samiei, S, Davaran, Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine, Nanoscale Res. Lett. 2012, 7, 144.
21. W. C. Griffin, Classification of Surface-Active Agents by “HLB”. J. Soc. Cosmetic Chemists, 1949, 1, 311-326.
22. W. C. Griffin, Calculation of HLB Values of Non-Ionic Surfactants. J. Soc. Cosmetic Chemists 1954, 5, 249-256.