簡易檢索 / 詳目顯示

研究生: 林詩叡
Lin, Shih-Jui
論文名稱: 二硫化鉬電晶體之接觸電阻降低研究
Investigation of Reducing the Contact Resistance of Molybdenum Disulfide Transistors
指導教授: 吳文發
Wu, Wen-Fa
張廖貴術
Chang-Liao, Kuei-Shu
口試委員: 吳永俊
Wu, Yung-Chun
蘇俊榮
Su, Chun-Jung
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2024
畢業學年度: 113
語文別: 中文
論文頁數: 75
中文關鍵詞: 二硫化鉬二維材料接觸電阻半金屬快速熱退火
外文關鍵詞: Molybdenum Disulfide, Two-dimensional materials, Contact resistance, Semimetals, Rapid Thermal Annealing
相關次數: 點閱:58下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在元件尺寸不斷微縮下,傳統的矽基電晶體逐漸達到其物理極限,短通道效應造成的元件效能下降亟需解決,因此近年研究著重在尋找能夠取代矽的新興通道材料。過渡金屬二硫屬化物中的二硫化鉬具有接近矽的能隙,以及本身極薄的厚度等特性,在元件微縮的發展上極具優勢。然而二硫化鉬電晶體會受到金屬誘發間隙態的影響,產生強烈的費米能階釘扎現象,因此面臨到非常高的接觸電阻,嚴重降低元件的性能。
    為了改善二硫化鉬電晶體的高接觸電阻,本論文探討使用半金屬作為接觸金屬,利用半金屬在費米能階附近之態密度趨近於零的特性,抑制金屬誘發間隙態,進而降低二硫化鉬電晶體的接觸電阻以提升整體元件表現。首先,本論文探討了半金屬銻和一般金屬鈦作為二硫化鉬電晶體金屬接觸的差異,並確認了在頂部接觸的元件中,半金屬銻有較低的接觸電阻,且蕭特基能障為接近理論值的360meV,顯示半金屬銻能夠減緩費米能階釘扎效應。接著,我們使用過氧化氫蝕刻,成功製作出具有邊緣接觸且頂部接觸長度為40奈米之混合接觸元件,並證實此混合接觸元件中,半金屬銻的接觸電阻仍然低於一般金屬鈦。在這兩種接觸方式中,半金屬銻之最大開電流以及接觸電阻都非常接近,而一般金屬鈦混合接觸元件之接觸電阻卻高達頂部接觸元件的50倍,顯示半金屬銻在降低二硫化鉬元件的接觸電阻以及元件微縮方面皆具有非常高的潛力。
    為了再更進一步降低半金屬銻接觸元件的接觸電阻,本論文採用快速熱退火製程,期望移除二硫化鉬表面吸附物,並改善金屬接觸和二硫化鉬的介面。將元件個別經過400°C、450°C以及500°C退火30秒後,透過電性及材料分析,確認400°C和450°C退火之元件的場效載子遷移率皆提升,且接觸電阻都大幅降低,其中以450°C退火之元件表現最好,單一顆元件的最低接觸電阻達到1.3kΩ·μm。但是500°C退火之元件因為覆蓋金屬鋁發生了嚴重的擴散,且有可能和二硫化鉬形成了部分的一般金屬鋁的接觸,因此接觸電阻反而提升。
    本研究證實半金屬銻作為二硫化鉬電晶體接觸金屬之優勢,且透過適當的退火條件能夠再進一步降低接觸電阻,期望未來能將二維材料成功應用於先進元件中。
    關鍵字:二硫化鉬、二維材料、接觸電阻、半金屬、快速熱退火


    As the size of transistors continue scaling, silicon-based transistors are approaching their physical limits, necessitating solutions to the performance degradation caused by short-channel effects. Recent researches have focused on finding new channel materials with the potential to replace silicon. Molybdenum disulfide (MoS2), a transition metal dichalcogenide, features a bandgap comparable to silicon and an extremely thin structure, making it advantageous for device scaling. However, MoS2 transistors are significantly affected by metal-induced gap states, which lead to severe Fermi level pinning and consequently high contact resistance, adversely degrades device performance.
    For the purpose of reducing the high contact resistance of MoS2 transistors, this study explores the use of semimetal as contact metal, leveraging their near-zero density of states around the Fermi level to suppress metal-induced gap states and thereby reduce contact resistance, enhancing overall device performance. Initially, the differences between the semimetal antimony and titanium as metal contacts for MoS2 transistors were investigated, confirming that the semimetal antimony exhibits lower contact resistance in top-contact devices, and the Schottky barrier height is 360meV, which is close to the theoretical value, indicating that semimetal antimony can reduce the Fermi level pinning effect. Subsequently, we successfully fabricated hybrid contact devices with edge contacts and a top-contact length of 40nm using hydrogen peroxide etching. It was further demonstrated that the contact resistance of the semimetal antimony in hybrid contact devices remains lower than that of titanium. In both contact configurations, the on-state current and contact resistance for the semimetal antimony were comparable, while the contact resistance for the titanium hybrid-contact device was fifty times greater than that of the top-contact device. These results highlight the significant potential of semimetal antimony in reducing contact resistance of MoS2 transistors and facilitating device scaling.
    To further reduce the contact resistance of the semimetal antimony devices, rapid thermal annealing was employed to remove surface adsorbates from the MoS2 films and improve the metal-MoS2 interface. Devices were subjected to annealing at 400°C, 450°C, and 500°C for 30 seconds. Electrical and material analyses confirmed that the field-effect mobility of the devices annealed at 400°C and 450°C was enhanced, with their contact resistance significantly reduced. Notably, the devices annealed at 450°C exhibited the best performance, achieving a minimum contact resistance of 1.3kΩ·μm. In contrast, the 500°C annealed devices exhibited increased contact resistance due to severe diffusion of the capping metal aluminum, which potentially formed partial aluminum contacts with MoS2.
    This research substantiates the advantages of utilizing semimetal antimony as a contact metal for MoS2 transistors, and demonstrates that appropriate annealing conditions can further reduce contact resistance. It is anticipated that in the future, two-dimensional materials will be successfully applied in advanced devices.
    Keywords: Molybdenum disulfide, two-dimensional materials, contact resistance, semimetals, rapid thermal annealing.

    摘要 i Abstract iii 誌謝 v 目錄 vii 表目錄 x 圖目錄 xi 第一章 緒論 1 1.1研究背景 1 1.2研究動機 3 第二章 文獻回顧 7 2.1二維材料的發展 7 2.2二維材料的瓶頸 9 2.3蕭特基接觸 10 2.4金屬接觸方式 14 2.4.1頂部接觸(Top contact) 14 2.4.2邊緣接觸(Edge contact) 15 2.4.3混合接觸(Hybrid contact) 16 2.5二硫化鉬電晶體退火 18 第三章 實驗方法及原理 20 3.1製程設備介紹 20 3.1.1化學氣相沉積(Chemical Vapor Deposition, CVD) 20 3.1.2物理氣相沉積(Physical Vapor Deposition, PVD) 21 3.1.3微影(Photolithography) 22 3.1.4抽風櫃-過氧化氫蒸氣蝕刻以及金屬剝離製程 23 3.1.6快速熱退火設備 24 3.2量測儀器介紹 25 3.2.1拉曼光譜學(Raman spectroscopy) 25 3.2.2穿透式電子顯微鏡(Transmission Electron Microscopy, TEM) 26 3.2.3 X射線光電子能譜(X-ray photoelectron spectroscopy) 28 3.2.4電性量測系統 29 3.3 實驗原理及理論 31 3.3.1臨界電壓(Threshold Voltage, V_TH)及場效載子遷移率(Field-Effect Mobility, μ_FE) 31 3.3.2次臨界擺幅(Subthreshold swing, S.S.) 32 3.3.3蕭特基能障萃取 32 3.3.4傳輸線模型(Transmission Line Model, TLM)與傳輸長度(Transfer length, L_T) 33 3.3.5 Y函數法 (Y-Function Method, YFM) 37 3.3.6 二維材料接觸電阻單位 41 第四章 降低接觸電阻研究 42 4.1二硫化鉬背閘極元件製程 42 4.1.1頂部接觸二硫化鉬背閘極電晶體製程 42 4.1.2混合接觸二硫化鉬背閘極電晶體製程 44 4.2金屬類型與接觸方式比較 45 4.2.1一般金屬(Metal)以及半金屬(Semimetal) 45 4.2.2一般金屬以及半金屬頂部接觸元件之比較 47 4.2.3 一般金屬以及半金屬頂部接觸及混合接觸元件之比較 52 4.3退火對二硫化鉬電晶體之影響 57 4.3.1 快速熱退火 (Rapid Thermal Annealing, RTA) 57 4.3.2 退火對半金屬接觸的影響 58 4.3.3 退火造成的金屬擴散行為 65 第五章 結論 68 參考文獻 69

    [1] X. Hu, "Application of Moore’s law in semiconductor and integrated circuits intelligent manufacturing," 2022 IEEE 2nd International Conference on Power, Electronics and Computer Applications (ICPECA), Shenyang, China, 2022, pp. 964–968.
    [2] S. S. Mahato et al., "DIBL in short-channel strained-Si n-MOSFET," 2008 15th International Symposium on the Physical and Failure Analysis of Integrated Circuits, Singapore, 2008, pp. 1–4.
    [3] R. Loo et al., "Processing technologies for advanced Ge devices," ECS Journal of Solid State Science and Technology, vol. 6, no. 1, pp. 14–20, 2016.
    [4] A. Rai et al., "Progress in contact, doping and mobility engineering of MoS2: An atomically thin 2D semiconductor," Crystals, vol. 8, no. 8, 316, 2018.
    [5] Y. Liu, X. Duan, Y. Huang and X. Duan, "Two-dimensional transistors beyond graphene and TMDCs," Chemical Society Reviews, vol. 47, no. 16, pp. 6388–6409, 2018.
    [6] D. Akinwande et al., "Graphene and two-dimensional materials for silicon technology," Nature, vol. 573, pp. 507–518, 2019.
    [7] F. Zhuo et al., "Modifying the power and performance of 2-dimensional MoS2 field effect transistors," Research, vol.6, 0057, 2023.
    [8] Z. He et al., "GaSe/MoS2 heterostructure with ohmic-contact electrodes for fast, broadband photoresponse, and self-driven photodetectors," Advanced Materials Interfaces, vol. 7, no. 9, 1901848, 2020.
    [9] C. P. Anderson, "Spin qubits in silicon carbide electronic devices," Doctoral dissertation, Department of physics, The University of Chicago, Chicago, Illinois, USA, 2020.
    [10] S. Wang et al., "Two-dimensional devices and integration towards the silicon lines," Nature Materials, vol. 21, no.11, pp. 1225–1239, 2022.
    [11] F. Pulizzi et al., "Graphene in the making," Nature Nanotechnology, vol. 14, no. 10, pp. 914–918, 2019.
    [12] S. Z. Butler et al., "Progress, challenges, and opportunities in two-dimensional materials beyond graphene," ACS Nano, vol. 7, no.4, pp. 2898–2926, 2013.
    [13] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, "Electric field effect in atomically thin carbon films," Science, vol. 306, no. 5696, pp. 666–669, 2004.
    [14] Z.-Y. Chen, and R. Qin, "High harmonic generation in graphene–boron nitride heterostructures," Journal of Materials Chemistry C, vol. 8, no. 35, pp. 12085–12091, 2020.
    [15] X. Su et al., "Bandgap engineering of MoS2/MX2 (MX2 = WS2, MoSe2 and WSe2) heterobilayers subjected to biaxial strain and normal compressive strain," RSC Advance, vol. 6, no. 22, pp. 18319–18325, 2016.
    [16] X. Liu et al., "Thin-film electronics based on all-2D van der Waals heterostructures," Journal of Information Display, vol. 22, no. 4, pp. 231–245, 2021.
    [17] Y. Li, G. Kuang, Z. Jiao, L. Yao, and R. Duan, "Recent progress on the mechanical exfoliation of 2D transition metal dichalcogenides," Materials Research Express, vol. 9, no. 12, 122001, 2022.
    [18] L. Sun et al., "Chemical vapour deposition," Nature Reviews Methods Primers, vol. 1, 5, 2021.
    [19] H. Yoo, K. Heo, M. H. R. Ansari, and S. Cho, "Recent advances in electrical doping of 2D semiconductor materials: Methods, analyses, and applications," Nanomaterials, vol. 11, no. 4, 832, 2021.
    [20] R. T. Tung, "The physics and chemistry of the Schottky barrier height," Applied Physics Reviews, vol. 1, no. 1, 011304, 2014.
    [21] C. Kim et al., "Fermi level pinning at electrical metal contacts of monolayer molybdenum dichalcogenides," ACS Nano, vol. 11, no. 2, pp. 1588–1596, 2017.
    [22] P.-C. Shen et al., "Ultralow contact resistance between semimetal and monolayer semiconductors," Nature, vol. 593, no. 7858, pp. 211–217, 2021.
    [23] J. Xie et al., "Analysis of Schottky barrier heights and reduced Fermi-level pinning in monolayer CVD-grown MoS2 field-effect-transistors," Nanotechnology, vol. 33, no. 22, 225702, 2022.
    [24] C. D. English, G. Shine, V. E. Dorgan, K. C. Saraswat, and E. Pop, "Improved contacts to MoS2 transistors by ultra-high vacuum metal deposition," Nano Letters, vol. 16, no. 6, pp. 3824–3830, 2016.
    [25] W. C. Wu et al., "On the extreme scaling of transistors with monolayer MoS2 channel," 2024 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits), Honolulu, HI, USA, 2024, pp. 1–2.
    [26] J. Kang, W. Liu, D. Sarkar, D. Jena, and K. Banerjee, "Computational study of metal contacts to monolayer transition-metal dichalcogenide semiconductors," Physical Review X, vol. 4, no. 3, 031005, 2014.
    [27] Y.-Y. Chung, C.-F. Li, C.-T. Lin, Y.-T. Ho, and C. H. Chien, "Experimentally determining the top and edge contact resistivities of two-step sulfurization Nb-doped MoS2 films using the transmission line measurement," IEEE Electron Device Letters, vol. 40, no. 10, pp. 1662–1665, 2019.
    [28] K. S. Kim et al., "The future of two-dimensional semiconductors beyond Moore’s law," Nature Nanotechnology, vol. 19, no. 7, pp. 895–906, 2024.
    [29] W. S. Leong, C. T. Nai, and J. T. L. Thong, "What does annealing do to metal–graphene contacts," Nano Letters, vol. 14, no. 7, pp. 3840–3847, 2014.
    [30] R. Yang, X. Zheng, Z. Wang, C. J. Miller, and P. X.-L. Feng, "Multilayer MoS2 transistors enabled by a facile dry-transfer technique and thermal annealing," Journal of Vacuum Science & Technology B, vol. 32, no. 6, 061203, 2014.
    [31] M. Saeed, Y. Alshammari, S. A. Majeed, and E. Al-Nasrallah, "Chemical vapour deposition of graphene-synthesis, characterisation, and applications: A review," Molecules, vol. 25, no. 17, 3856, 2020.
    [32] S. Shahidi, B. Moazzenchi, and M. Ghoranneviss, "A review-application of physical vapor deposition (PVD) and related methods in the textile industry," European Physical Journal Applied Physics, vol. 71, no. 3, 31302, 2015.
    [33] 楊金成、柯富陽、吳政三。自動化阻劑處理系統介紹。科儀新知,第120期,頁46–61,2001年。
    [34] A. A. Rostami and S. Masoumi, "Single-step lift-off process with toluene and shipley 1813 type photoresist," Specialty Journal of Electronic and Computer Sciences, vol. 5, no. 2, pp. 47–52, 2019.
    [35] G. Golan and A. Axelevitch, "Progress in vacuum photothermal processing (VPP)," Microelectronics Journal, vol. 37, no. 5, pp. 459–473, 2006.
    [36] R. R. Jones, D. C. Hooper, L. Zhang, D. Wolverson, and V. K. Valev, "Raman techniques: Fundamentals and frontiers," Nanoscale Research Letters, vol. 14, no. 1, 231, 2019.
    [37] R. F. Egerton and M. Watanabe, "Spatial resolution in transmission electron microscopy," Micron, vol. 160, 103304, 2022.
    [38] M. Agrawal et al., "A comprehensive review of electron microscopy in materials science: Technological advances and applications," E3S Web of Conferences., vol. 505, 01029, 2024.
    [39] G. Greczynski and L. Hultman, "X-ray photoelectron spectroscopy: Towards reliable binding energy referencing," Progress in Materials Science, vol. 107, 100591, 2020.
    [40] D. K. Schroder., "Semiconductor material and device characterization," 3rd ed., Hoboken, New Jersey, John Wiley & Sons, Inc., 2006, pp. 138–148.
    [41] H. Liu et al., "Switching mechanism in single-layer molybdenum disulfide transistors: An insight into current flow across Schottky barriers," ACS Nano, vol. 8, no. 1, pp. 1031–1038, 2014.
    [42] S. Lee et al., "Contact Resistivity in Edge-Contacted Graphene Field Effect Transistors," Advanced Electronic Materials, vol. 8, no. 5, 2101169, 2022.
    [43] H. Chu, B. Cabon-Till, S. Cristoloveanu, and G. Ghibaudo, "Experimental determination of short-channel MOSFET parameters," Solid-State Electronics, vol. 28, no. 10, pp. 1025–1030, 1985.
    [44] Y. Xu, T. Minari, K. Tsukagoshi, J. A. Chroboczek, and G. Ghibaudo, "Direct evaluation of low-field mobility and access resistance in pentacene field-effect transistors," Journal of Applied Physics, vol. 107, no. 11, 114507, 2010.
    [45] H. Y. Chang, W. Zhu, and D. Akinwande, "On the mobility and contact resistance evaluation for transistors based on MoS2 or two-dimensional semiconducting atomic crystals," Applied Physics Letters, vol. 104, no. 11, 113504, 2014.
    [46] K. Hemanjaneyulu, J. Kumar, and M. Shrivastava, "Gaps in the Y-function method for contact resistance extraction in 2D few-layer transition metal dichalcogenide back-gated FETs," IEEE Electron Device Letters, vol. 43, no. 4, pp. 635–638, 2022.
    [47] E. Reato et al., "Zero-bias power-detector circuits based on MoS2 field-effect transistors on wafer-scale flexible substrates," Advanced Materials, vol. 34, no. 48, 2108469, 2022.
    [48] H. Yang, X. Chen, D. Wu, and X. Fang, "High-performance flexible MoS2 transistors using Au/Cr/Al/Au as source/drain electrodes," Advanced Electronic Materials, vol. 9, no. 12, 2300277, 2023.
    [49] K. K. H. Smithe, S. V. Suryavanshi, M. Muñoz Rojo, A. D. Tedjarati, and E. Pop, "Low variability in synthetic monolayer MoS2 devices" ACS Nano, vol. 11, no. 8, pp. 8456–8463, 2017.
    [50] X. Xiao et al., "Sub-10 nm monolayer MoS2 transistors using single-walled carbon nanotubes as an evaporating mask," ACS Applied Materials & Interfaces, vol. 11, no. 12, pp. 11612–11617, 2019.
    [51] H.-J. Kwon, S. Kim, J. Jang, and C. P. Grigoropoulos, "Evaluation of pulsed laser annealing for flexible multilayer MoS2 transistors," Applied Physics Letters, vol. 106, no. 11, 113111, 2015.
    [52] 詹舜翔。半金屬電極於二硫化鉬短通道電晶體之電性及熱穩定性研究。碩士論文,電機資訊學院光電工程研究所,國立臺灣大學,臺北,臺灣,2021年。
    [53] R. Schlaf, O. Lang, C. Pettenkofer, and W. Jaegermann, "Band lineup of layered semiconductor heterointerfaces prepared by van der Waals epitaxy: Charge transfer correction term for the electron affinity rule," Journal of Applied Physics, vol. 85, no. 5, pp. 2732–2753, 1999.
    [54] K. Andrews, A. Bowman, U. Rijal, P.-Y. Chen, and Z. Zhou, "Improved contacts and device performance in MoS2 transistors using a 2D semiconductor interlayer," ACS Nano, vol. 14, no. 5, pp. 6232–6241, 2020.

    QR CODE