研究生: |
劉姿伶 |
---|---|
論文名稱: |
利用鉭金屬覆蓋於鈷催化劑上自組裝成長奈米碳管連接孔之研究 An Approach to Form Self-aligned Carbon Nanotube Vias Utilizing a Ta-cap Layer on Co-catalyst |
指導教授: | 游萃蓉 |
口試委員: |
徐文光
鄭晃忠 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 77 |
中文關鍵詞: | 奈米碳管 、內連線 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用鉭金屬(Ta-cap)覆蓋於鈷催化劑(Co)之上,於400 C下利用化學氣相沉積法形成一自組裝CNT-via結構,做為未來積體電路內連線之應用。
覆蓋於Co上方的Ta-cap層能避免大氣中的氧氣直接與Co催化劑接觸,進而防止Co因氧化而降低活性,影響奈米碳管的成長。經過奈米碳管成長後,Ta-cap層會被奈米碳管頂起至上方,形成一連續Ta-cap與奈米碳管介面。一般來說,在奈米碳管內連線研究中,若欲形成CNT-via結構,在奈米碳管形成之後,會有以化學機械拋光使之平坦化,或沉積上方金屬電極等製程,而上述製程易於奈米碳管與上電極介面間形成雜質或孔洞。本研究中的Ta-cap層能提供一個連續的介面,避免奈米碳管與上方金屬電極介面產生雜質或孔洞。
本研究發現Ta-cap層厚度為主要影響奈米碳管成長之參數,故調變不同厚度並探討其影響。在奈米碳管成長後,為使電性有更好的表現,利用氧電漿去除Ta-cap層表面累積之導電性不佳的非晶形碳膜。此外,為了量測利用Ta-cap/Co結構所成長出的CNT-via電性及驗證內連線應用之可行性,本研究亦將奈米碳管成長於連接孔內。此奈米碳管連線於製程上與現行積體電路有相容性,具備未來應用之潛力。
This work presents an approach to form self-aligned carbon nanotube vias (CNT-vias) by chemical vapor deposition at 400 C utilizing a tantalum Ta-cap layer on Co catalyst for interconnect application.
The Ta-cap layer could protect the Co catalyst from oxidation. This protection potentially reduced the need for additional processing steps to control the size and activity of Co catalyst, which are two critical parameters for CNT formation. The Ta-cap layer was observed remaining on the top of the multi-walled CNTs as a contact layer to metal top electrode after the synthesis at 400 °C. The Ta-cap layer self-formed a continuous interface between metal top electrode layer and CNT layer, which could avoid impurities or voids caused by the conventional chemical mechanical polishing after CNT formation or metal top electrode deposition process.
The Ta-cap layer thickness was found to be the key parameter affecting CNT quality and was optimized. The O2 plasma treatment was implemented to remove residual amorphous carbon accumulated on the top of Ta-cap layer after CNT formation. CNTs were also fabricated in the via holes to measure the resistance of CNT-vias and confirm the future interconnect application. This work demonstrated a process to fabricate self-aligned CNT interconnects at low temperature, which could facilitate its future interconnect application.
[1] D. A. B. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE, vol. 88, no. 6, pp. 728-749, 2000.
[2] A. Scandurra, “Rationale for optical interconnect,” ISCAS Conf., 2010, pp. 3597-3600.
[3] Y. Song, A. L. Schmitt and S. Jin, “Ultralong single-crystal metallic Ni2Si nanowires with low resistivity,” Nano. Lett., vol. 7, pp. 965-969, 2007.
[4] M. Nihei, M. Horibe, A. Kawabata and Y. Awano, “Simultaneous formation of multiwall carbon nanotubes and their end-bonded ohmic contacts to Ti electrodes for future ULSI interconnects,” Jpn. J. Appl. Phys., vol. 43, pp. 1856-1859, 2004.
[5] M. Nihei, A. Kawabata, D. Kondo, M. Horibe, S. Sato and Y. Awano, “Electrical properties of carbon nanotube bundles for future via interconnects,” Jpn. J. Appl. Phys., vol. 44, pp. 1626-1628, 2005.
[6] M. Horibe, M. Nihei, D. Kondo, A. Kawabata and Y. Awano, “Carbon nanotube growth technologies using tantalum barrier layer for future ULSIs with Cu/Low-k interconnect processes,” Jpn. J. Appl. Phys., vol. 44, pp. 5309-5312, 2005.
[7] Y. Awano, S. Sato, D. Kondo, M. Ohfuti, A. Kawabata, M. Nihei and N. Yokoyama, “Carbon nanotube via interconnect technologies: size-classified catalyst nanoparticles and low-resistance ohmic contact formation,” Phys. Stat. Sol. (a), vol. 203, pp. 3611-3616, 2006.
[8] D. Yokoyama, T. Iwasaki, T. Yoshida, H. Kawarada, S. Sato, T. Hyakushima, M. Nihei and Y. Awano, “Low temperature grown carbon nanotube interconnects using inner shells by chemical mechanical polishing,” Appl. Phys. Lett., vol. 91, pp. 263101-263103, 2007.
[9] M. Katagiri, N. Sakuma, M. Suzuki, T. Sakai, S. Sato, T. Hyakushima, M. Nihei and Y. Awano, “Carbon nanotube vias fabricated by remote plasma-enhanced chemical vapor deposition,” Jpn. J. Appl. Phys., vol. 47, pp. 2024-2027, 2008.
[10] D. Yokoyama, T. Iwasaki, K. Ishimaru, S. Sato, T. Hyakushima, M. Nihei, Y. Awano and H. Kawarada, “Electrical properties of carbon nanotubes grown at a low temperature for use as interconnect,” Jpn. J. Appl. Phys., vol. 47, pp. 1985-1990, 2008.
[11] A. Kawabata, S. Sato, T. Nozue, T. Hyakushima, M. Norimatsu, M. Mishoma, T. Murakami, D. Kondo, K. Asano, M. Ohfuti, H. Kawarada, T. Sakai, M. Nihei and Y. Awano, “Robustness of CNT via interconnect fabricated by low temperature process over a high-density current,” IITC Conf., 2008, pp. 237-239.
[12] F. Kreupl, A. P. Graham, G. S. Duesberg, W. Steinhogl, M. Liebau and E. Unger, “Carbon nanotubes in interconnect applications,” Microelectron. Eng., vol. 64, pp. 399-408, 2002.
[13] W. Hoenlein, F. Kreupl, G. S. Duesberg, A. P. Graham, M. Liebau, R. V. Seidel and E. Unger, “Carbon nanotube applications in microelectronics,” IEEE Trans. Comp. Pack. Tech., vol. 27, pp. 629-634, 2004.
[14] A. P. Graham, G. S. Duesberg, W. Hoenlein, F. Kreupl, M. Liebau, R. Martin, B. Rajasekharan, W. Pamler, R. Seidel, W. Steinhoegl and E. Unger, “How do carbon nanotubes fit into the semiconductor roadmap,” Appl. Phys. A, vol. 80, pp. 1141-1151, 2005.
[15] Z. Yao, C. L. Kane and C. Dekker, “High-field electrical transport in single-wall carbon nanotubes,” Phys. Rev. Lett., vol. 84, pp. 2941-2944, 2000.
[16] A. V. Melechko, V. I. Merkulov, T. E. McKnight, M. A. Guillorn, K. L. Klein, D. H. Lowndes and M. L. Simpson, “Vertically aligned carbon nanofibers and related structures: Controlled synthesis and directed assembly,” J. Appl. Phys., vol. 97, pp. 041301 1-39, 2005.
[17] International technology roadmap for semiconductors (ITRS) 2011 edition interconnect.
[18] S. Iijima, “Helical microtubules of graphitic carbon,” Nature, vol. 354, pp. 56-58, 1991.
[19] M. S. Dresselhaus, G. Dresselhaus and P. C. Eklund, Science of fullerenes and carbon nanotubes. San Diego: Academic Press, 1990.
[20] J. P. Lu, “Elastic properties of carbon nanotubes and nanoropes,” Phys. Rev. Lett., vol. 79, pp. 1297-1300, 1997.
[21] S. Berber, Y. K. Kwon and D. Tománek, “Unusually high thermal conductivity of carbon nanotubes,” Phys. Rev. Lett., vol. 84, pp. 4613-4616, 2000.
[22] C. Journet, W. K. Maser, P. Bernier, A. Loiseau, M. Lamy de la Chapelle, S. Lefrant, P. Deniard, R. Lee and J. E. Fischer, “Large-scale production of single-walled carbon nanotubes by the electric-arc technique,” Nature, vol. 388, pp. 756-758, 1997.
[23] A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tománek, J. E. Fischer and R. E. Smalley, “Crystalline Ropes of Metallic Carbon Nanotubes,” Science, vol. 273, pp. 483-487, 1996.
[24] Z. F. Ren, Z. P. Huang, J. W. Xu, J. H. Wang, P. Bush, M. P. Siegal and P. N. Provencio, “Synthesis of large arrays of well-aligned carbon nanotubes on glass,” Science, vol. 282, pp. 1105-1107, 1998.
[25] S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell and H. Dai, “Self-oriented regular arrays of carbon nanotubes and their field emission properties,” Science, vol. 283, pp. 512-514, 1991.
[26] C. Bower, O. Zhou, W. Zhu, D. J. Werder and S. Jin, “Nucleation and growth of carbon nanotubes by microwave plasma chemical vapor deposition,” Appl. Phys. Lett., vol. 77, pp. 2767-2769, 2000.
[27] M. Su, B. Zheng and J. Liu, “A scalable CVD method for the synthesis of single-walled carbon nanotubes with high catalyst productivity,” Chem. Phys. Lett., vol. 322, pp. 321-326, 2000.
[28] J. Li, Q. Ye, A. Cassell, H. T. Ng, R. Stevens, J. Han and M. Meyyappan, “Bottom-up approach for carbon nanotube interconnects,” Appl. Phys. Lett., vol. 82, pp. 2491-2493, 2003.
[29] Y. Ominami, Q. Ngo, M. Suzuki, A. J. Austin, C. Y. Yang, A. M. Cassell and J. Li, “Interface characteristics of vertically aligned carbon nanofibers for interconnect applications,” Appl. Phys. Lett., vol. 89, pp. 263114 1-3, 2006.
[30] Y. Ominami, Q. Ngo, N. P. Kobayashi, K. Mcilwrath, K. Jarausch, A. M. Cassell, J. Li and C. Y. Yang, “Bottom-up sample preparation technique for interfacial characterization of vertically aligned carbon nanofibers,” Ultramicroscopy, vol. 106, pp. 597-602, 2006.
[31] Q. Ngo, T. Yamada, M. Suzuki, Y. Ominami, A. M. Cassell, M. Meyyappan and C. Y. Yang, “Structural and electrical characterization of carbon nanofibers for interconnect via applications,” IEEE Trans. Nanotechnol., vol. 6, pp. 688-695, 2007.
[32] S. Sato, M. Nihei, A. Mimura, A. Kawabata, D. Kondo, H. Shioya, T. Iwai, M. Mishima, M. Ohfuti and Y. Awano, “Novel approach to fabricating carbon nanotube via interconnects using size-controlled catalyst nanoparticles,” IITC Conf., 2006, pp. 230-232.
[33] I. Martin-Gullon, J. Vera, J. A.Conesa, J. L. Gonzalez and C. Merino, “Differences between carbon nanofibers produced using Fe and Ni catalysts in a floating catalyst reactor,” Carbon, vol. 44, pp. 1572-1580, 2006.
[34] D. B. Thaku, R. M. Tiggelaar, J. G. E. Gardeniers, L. Lefferts and K. Seshan, “Growth of carbon nanofiber coatings on nickel thin films on fused silica by catalytic thermal chemical vapor deposition: On the use of titanium, titanium–tungsten and tantalum as adhesion layers,” Surf. Coat. Tech., vol. 203, pp. 3435-3441, 2009.
[35] M. Meyyappan, L. Delzeit, A. Cassell and D. Hash, “Carbon nanotube growth by PECVD: a review,” Plasma Sources Sci. Technol., vol. 12, pp. 205-216, 2003.
[36] H. Y. Miao, J. T. Lue JT, S. Y. Chen, S. K Chen and M. S. Ouyang, “Growth of carbon nanotubes on transition metal alloys by microwave-enhanced hot-filament deposition,” Thin Solid Films, vol. 484, pp. 58-63, 2005.
[37] Y. Y. Wei, G. Eres, V. I. Merkulov and D. H. Lowndes, “Effect of catalyst film thickness on carbon nanotube growth by selective area chemical vapor deposition,” Appl. Phys. Lett., vol. 78, pp. 1394-1396, 2001.
[38] W. Hofmeister, W. P. Kang, Y. M. Wong and J. L. Davidson, “Carbon nanotube growth from Cu-Co alloys for field emission applications,” J. Vac. Sci. Technol. B, vol. 22, pp. 1286-1289, 2004.
[39] M. Kumar and Y. Ando. “Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production,” J. Nanosci. Nanotechnol., vol. 10, pp. 3739-3758, 2010.
[40] S. C. Lim, J. H. Jang, D. J. Bae, G. H. Han, S. Lee, I. S. Yeo and Y. H. Lee, “Contact resistance between metal and carbon nanotube interconnects: Effect of work function and wettability,” Appl. Phys. Lett., vol. 95, pp. 264103 1-3, 2009.
[41] M. S. Wang, D. Golberg and Y. Bando, “Superstrong low-resistant carbon nanotube–carbide–metal nanocontacts,” Adv. Mater., vol. 22, pp. 5350-5355, 2010.
[42] Z. Liu , L. Ci, N. Bajwa, P. M. Ajayan and J. Q. Lu, “Benchmarking of metal-to-carbon nanotube side contact resistance,” IITC Conf., 2008, pp. 144-146.
[43] H. C. Su, C. M. Lin, S. J. Yen, Y. C. Chen, C. H. Chen, S. R. Yeh, W. Fang, H. Chen, D. J. Yao, Y. C. Chang and T. R. Yew, “A cone-shaped 3D carbon nanotube probe for neural recording,” Biosensors and Bioelectronics, vol. 26, pp. 220-227, 2010.
[44] A. Jorio, M. A. Pimenta, A. G. Souza Filho, R. Saito, G. Dresselhaus and M. S. Dresselhaus, “Characterizing carbon nanotube samples with resonance Raman scattering,” New J. Phys., vol. 5, pp. 139 1-17, 2003.
[45] Y. C. Choi, D. J. Bae, Y. H. Lee, B. S. Lee, I. T. Han, W. B. Choi, N. S. Lee and J. M. Kim, “Low temperature synthesis of carbon nanotubes by microwave plasma-enhanced chemical vapor deposition,” Synthetic Metals, vol. 108, pp. 159-163, 2000.
[46] P. M. Natishan, E. McCafferty, P. R. Puckett and S. Michel, “Ion beam assisted deposited tantalum oxide coatings on aluminum,” Corrosion Science, vol. 38, pp. 1043-1049, 1996.
[47] J. G. Choi, “The influence of surface properties on catalytic activities of tantalum carbides,” Applied Catalysis A: General, vol. 184, pp. 189-201, 1999.
[48] N. I. Kovtyukhova, T. E. Mallouk, L. Pan and E. C. Dickey, “Individual single-walled nanotubes and hydrogels made by oxidative exfoliation of carbon nanotube ropes,” J. Am. Chem. Soc., vol. 125, pp. 9761-9769, 2003.
[49] A. Felten, C. Bittencourt, J. J. Pireaux, G. V. Lier and J. C. Charlier, “Radio-frequency plasma functionalization of carbon nanotubes surface O2, NH3, and CF4 treatments,” J. Appl. Phys., vol. 98, pp. 074308 1-9, 2005.
[50] M. Liu, Y. Yang, T. Zhu and Z. Liu, “Chemical modification of single-walled carbon nanotubes with peroxytrifluoroacetic acid,” Carbon, vol. 43, pp. 1470-1478, 2005.
[51] T. I. T. Okpalugo, P. Papakonstantinou, H. Murphy, J. Mclaughlin and N. M. D. Brown, “High resolution XPS characterization of chemical functionalized MWCNTs and SWCNTs,” Carbon, vol. 43, pp. 153-161, 2005.
[52] T. L. Barr and S. Seal, “Nature of the use of adventitious carbon as a binding energy standard,” J. Vac. Sci. Technol. A, vol. 13, pp. 1239-1246, 1995.
[53] H. C. Su, C. H. Chen, Y. C. Chen, D. J. Yao, H. Chen, Y. C. Chang and T. R. Yew, “Improving the adhesion of carbon nanotubes to a substrate using microwave treatment,” Carbon, vol. 48, pp. 805-812, 2010.