簡易檢索 / 詳目顯示

研究生: 王崇懿
Wang, Chung-Yi
論文名稱: 運用社會網路與巨量資料辨識電話詐騙
Identifying fraud phone calls using Social Network Analysis: Application to a Large Mobile Phone Data
指導教授: 王俊程
口試委員: 嚴秀茹
王貞雅
學位類別: 碩士
Master
系所名稱: 科技管理學院 - 服務科學研究所
Institute of Service Science
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 48
中文關鍵詞: 詐騙檢測社會網路分析詐騙電話行動電話電話詐騙電話網路
外文關鍵詞: scam detection, telephone scam
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 電話詐騙的手法層出不窮,全球每年因被詐騙而損失的金額越來越高,在台灣每年被電話詐騙的金額已經超過四億,電話詐騙的問題日益嚴重,影響社會甚鉅。在這篇論文中,我們分析知名防詐騙App公司的資料,分析台灣行動電話使用者的通話記錄與封鎖清單之紀錄,從這些記錄中觀察並且區分詐騙電話與一般民眾的通話行為,進而達到防治的作用。本篇論文從社會網路分析為出發點,觀察行動電話的通話網路,從中找出了四項可以區分一般電話與詐騙電話的數值,分別為撥號次數、通話時間區間、共同撥號次數與撥號對象。建立一檢測異常通話行為之演算法,檢測之精確率達(88.48%)。比過去只依靠撥號次數異常或是通話時間長短來的方式來判斷詐騙電話,新的檢測方法可以更快速且更準確的檢測詐騙電話。


    Telephone scams exact a huge toll on consumers and society, with at large annual costs in the Taiwan alone can exceeding $4 billion. The global proliferation of the Internet has enabled con artists to export their craft to a rapidly expanding market and reach previously untapped consumers. For example, fraud gangs can make a call from China using the fake phone number to Taiwan. People in Taiwan will average received a fraud phone each month. In this paper, we analyze the call detail records and Blocked record of the mobile phone user. More precisely, we identify the fraud calls and analyze the calling behavior of these scammers. To detect scammers, we use statistics and social network analysis, developed four features: Call Count, Call Friend, Call Relevance and Call Duration Interval. Based on the analysis of calling behavior, we build an algorithm. Our results show that this model can detect and predict abnormal calling behavior with high precision (76.1%). We can block fraud phone numbers faster than ever before.

    Abstract I 摘要 II 誌謝辭 III Table of Contents IV List of Figure V List of Table VI 1. INTRODUCTION 1 2. BACKGROUND AND RELATED WORK 3 2.1 Social Network Analysis 3 2.2 Spammers on Social Networks 4 2.3 ICT Fraud Criminal Behaviors 5 2.4 The Mobile Phone Network 13 3. DATA DESCRIPTION 16 3.1 Users Call Detail Records 16 3.2 Blocked Number Records 18 4. DATA ANALYSIS 20 4.1 Identification of Fraud Calls 21 4.2 Identification of Fraud Campaigns 22 5. FRAUD CALL DETECTION 25 5.1 Spam Detection on Mobile Phone Network 33 5.2 Logistic Regression Analysis 34 5.3 Measuring Search Effectiveness 39 5.3.1 Decision Tree and Precision 39 5.4 Fraud Call Buster 44 6. CONCLUSIONS 45 6.1 Findings and contributions 45 6.2 Limitations and suggestions for future research 46 7. Reference 47

    Baruah, R. D., & Angelov, P. (2012, May). Evolving social network analysis: A case study on mobile phone data. In Evolving and Adaptive Intelligent Systems (EAIS), 2012 IEEE Conference on (pp. 114-120). IEEE.
    Centola, D., & Macy, M. (2007). Complex contagions and the weakness of long ties1. American Journal of Sociology, 113(3), 702-734.
    Katsaros, D., Dimokas, N., & Tassiulas, L. (2010). Social network analysis concepts in the design of wireless ad hoc network protocols. Network, IEEE, 24(6), 23-29.
    Easley, D., & Kleinberg, J. Networks, Crowds, and Markets. Cambridge University.
    Garton, L., Haythornthwaite, C., & Wellman, B. (1997). Studying online social networks. Journal of Computer‐Mediated Communication, 3(1), 0-0.
    Scott, J., & Carrington, P. J. (Eds.). (2011). The SAGE handbook of social network analysis. SAGE publications.
    Stringhini, G., Kruegel, C., & Vigna, G. (2010, December). Detecting spammers on social networks. In Proceedings of the 26th Annual Computer Security Applications Conference (pp. 1-9). ACM.
    Hidalgo, C. A., & Rodriguez-Sickert, C. (2008). The dynamics of a mobile phone network. Physica A: Statistical Mechanics and its Applications, 387(12), 3017-3024.
    Lambiotte, R., Blondel, V. D., de Kerchove, C., Huens, E., Prieur, C., Smoreda, Z., & Van Dooren, P. (2008). Geographical dispersal of mobile communication networks. Physica A: Statistical Mechanics and its Applications, 387(21), 5317-5325.
    Palla, G., Barabási, A. L., & Vicsek, T. (2007). Quantifying social group evolution. Nature, 446(7136), 664-667.
    Yardi, S., Romero, D., & Schoenebeck, G. (2009). Detecting spam in a twitter network. First Monday, 15(1).
    洪漢周. (2003). 新興詐欺犯罪趨勢與對策研究.《警學叢刊》, 34(1):141-164.
    范國勇、張平吾、蔡田木、劉擇昌. (2004). ATM 轉帳詐欺犯罪之實證研究. 內 政部警政署刑事警察局委託研究案, GRB-PG9308-0265.
    江慶興. (2006). 反詐騙尖兵-165 專線執行研析.《2006 年網路與金融詐騙犯罪 防制資訊應用研討會論文集》, 9-27.
    蔡蒼柏. (2006). 非法地下電信機房平臺之偵查-以新興詐欺犯罪為例.《2006 犯罪偵查學術與實務研討會論文集》, 1-12.
    曾進忠. (2010). 資通訊詐欺犯罪特性及歷程之研究. 臺北大學犯罪學研究所學位論文, 1-192.
    張智雄. (2011). 通訊詐欺犯罪行為特性與模式之研究. 臺北大學犯罪學研究所學位論文, 1-116.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE