簡易檢索 / 詳目顯示

研究生: 潘禹承
Pan, Yu-Cheng
論文名稱: 流動方向對迷你流道內超臨界二氧化碳熱傳效應之實驗研究
Experimental Investigation on the Effects of Flow Direction on Convection of Supercritical Carbon Dioxide in a Miniature Tube
指導教授: 陳紹文
Chen, Shao-Wen
李進得
Lee, Jin-Der
口試委員: 潘欽
Pan, Chin
傅本然
Fu, Ben-Ran
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 60
中文關鍵詞: 超臨界二氧化碳熱傳流向效應
外文關鍵詞: Supercritical, Carbon-dioxide, Heat-transfer, Flow-directions
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   當流體的壓力超過其臨界壓力且其溫度超過臨界溫度時,該流體即屬於超臨界狀態。超臨界二氧化碳作為工作流體已廣泛應用於動力工程、化學以及能源等諸多技術領域。超臨界二氧化碳具有相對良好的熱物理性質,如具有相對較低的臨界壓力(~73.8 bar)與接近室溫的臨界溫度(~304.25 K)。二氧化碳的熱物理性質與輸送現象在接近其假臨界區域時會歷經劇烈的變化,進而顯著地影響超臨界狀態下的熱傳特性。因此,對於超臨界二氧化碳在流道中局部的熱傳特性,有必要進行研究探討,以提升系統的設計、穩定性能與安全之運轉。
      本研究選用較符合環保的二氧化碳作為實驗環路的工作流體,目的在於探討超臨界二氧化碳在內徑2.2 mm光滑圓管下的熱傳特性。論文內容包含:超臨界熱傳實驗系統的架設與標準操作程序的建立,超臨界流體的熱物理性質蒐集與分析,並且進行超臨界二氧化碳在不同實驗參數(如: 系統壓力、質量流率、流動方向)下的熱傳實驗。
      實驗所量測的流體溫度其對應之熱物理性質均可由NIST REFPROP 數據庫查詢而得。本研究進行不同流動方向,包含水平流動、垂直向上與垂直向下,的超臨界二氧化碳熱傳實驗。實驗結果顯示當流體溫度超過臨界溫度時(即為超臨界狀態),其熱傳能力有惡化的現象;當流體溫度遠離假臨界點後,熱傳能力再次增強。在不同流動方向下,系統壓力的增加對於熱傳能力的影響不盡相同。三種流態下,質量流率的增加能顯著強化流體的熱傳能力;水平流動的熱傳能力最佳,垂直向下流動次之,垂直向上流動的熱傳能力最差。


    Supercritical fluid with the pressure and temperature above the pseudo-critical point has been widely adopted in power engineering, chemical process, energy system and other technical fields. Supercritical carbon dioxide relatively has a low critical pressure (~73.8 bar) and a low critical temperature (~304.25 K) close to room temperature at the critical point. The thermophysical properties and transport phenomena for supercritical carbon dioxide will experience dramatic changes near the pseudo-critical point to affect the heat transfer characteristics under supercritical conditions. Therefore, for the enhancement of the design and safe operation of such supercritical systems, it is necessary to carefully explore the local heat transfer characteristics of supercritical carbon dioxide in the flow channel.
    Carbon dioxide, which is more environmentally-friendly, is adopted as the working fluid in this experimental loop. The objective of this study is to investigate the local heat transfer characteristics of supercritical carbon dioxide in the smooth circular miniature tube with an inner diameter of 2.2 mm. This study includes the establishment of the supercritical heat transfer experimental loop and experiment procedures. Meanwhile, the collection and analysis of thermophysical properties for supercritical carbon dioxide. The heat transfer experiments are conducted under various system parameters, i.e. operating pressures, mass flow rates and flow directions.
    The local thermophysical properties of the carbon dioxide fluid corresponding to local measured temperatures can be acquired from the NIST REFPROP database. The heat transfer experiments of supercritical carbon dioxide are conducted under different flow directions, i.e. horizontal, vertical upward and vertical downward. The experimental results show that the heat transfer deterioration of the fluid would occur when the fluid temperature passes through the critical temperature point. However, the heat transfer will be enhanced again while the fluid temperature is far from the pseudo-critical point. The increase of the mass flow rate will enhance the heat transfer, while the effect of system pressure is different, among the cases in three flow directions. As the comparisons among three flow directions in this study, the horizontal flow has the best heat transfer performance and thus the vertical downward flow, whereas the vertical upward flow is the worst one.

    摘要......................I Abstract......................II 致謝......................IV 目錄......................V 表目錄......................VII 圖目錄......................VIII 符號說明......................X 第一章 緒論......................1 1.1 前言......................1 1.2 研究動機......................3 1.3 研究方法......................3 1.4 論文架構......................4 第二章 文獻回顧......................5 2-1 水平流動超臨界二氧化碳熱傳實驗研究......................5 2-2 垂直流動超臨界二氧化碳熱傳實驗研究......................8 第三章 實驗架構與方法*......................14 3.1 實驗測試段......................14 3.2 超臨界熱傳實驗研究環路......................15 3.3 實驗設備介紹......................17 3.4 實驗方法與步驟......................21 3.5 超臨界熱傳實驗分析......................22 3.6 均勻加熱條件驗證......................24 3.7 實驗誤差分析......................25 第四章 結果與討論......................27 4.1 超臨界二氧化碳熱物理性質分析......................27 4.2 超臨界壓力下二氧化碳熱傳特性與惡化現象......................30 4.3 系統壓力效應......................34 4.4 質量流率效應......................41 4.6 流動方向效應......................44 4.6文獻經驗式比較......................49 第五章 結論與未來研究建議......................53 5.1結論......................53 5.2 未來研究建議......................55 參考文獻......................56

    [1] Ahn Y, Bae S. J, Kim M, Cho S. K, Baik S, Lee J. I, Chab J. E. Review of supercritical CO2 power cycle technology and current status of research and development, Nuclear Engineering and Technology, 47 (2015): 647-661
    [2] Kim Y. M, Sohn J. L, Yoon E. S. Supercritical CO2 Rankine cycles for waste heat recovery from gas turbine, Energy, 118(2017): 893-905
    [3] Rao N. T, Oumer A. N, Jamaludin U. K. State-of-the-art on flow and heat transfer characteristics of supercritical CO2 in various channels, Journal of Supercritical Fluids, 116 (2016): 132–147
    [4] Ehsan M. M, Guan Z, Klimenko A. Y. A comprehensive review on heat transfer and pressure drop characteristics and correlations with supercritical CO2 under heating and cooling applications, Renewable and Sustainable Energy Reviews, 92 (2018) 658–675
    [5] Cabeza L. F, Gracia A, Fernández A, Mohammed M. Farid, Supercritical CO2 as heat transfer fluid: A review, Applied Thermal Engineering, 125 (2017) 799–810
    [6] Yamagata K, Nishikawa K, Hasegawa S, Fujii T, Yoshida S. Forced convective heat transfer to supercritical water flowing in tubes, International Journal of Heat and Mass Transfer, 15(1972): 2574-2593
    [7] Liao S. M, Zhao T. S. Measurements of heat transfer coefficients from supercritical carbon dioxide flowing in horizontal mini/micro channels, Journal of Heat Transfer, 124(2002): 413–20.
    [8] Huai X, Koyama S, Zhao T. An experimental study of flow and heat transfer ofsupercritical carbon dioxide in multi-port mini channels under cooling conditions, Chemical Engineering Science, 60 (2005): 3337–3345.
    [9] Oh H. K, Son C. H, New correlation to predict the heat transfer coefficient in-tube cooling of supercritical CO2 in horizontal macro-tubes, Experimental Thermal and Fluid Science, 34 (2010): 1230–1241
    [10] Zhang G. W, Hu P, Chen L. X, Liu M. H. Experimental and simulation investigation on heat transfer characteristics ofin-tube supercritical CO2 cooling flow, Applied Thermal Engineering, 143 (2018): 1101–1113
    [11] Huai X, Koyama S. Heat Transfer Characteristics of Supercritical CO2 Flow in Small-Channeled Structures, Experimental Heat Transfer, 20(2007):19–33.
    [12] Danga C, Hihara E. In-tube cooling heat transfer of supercritical carbon dioxide Part 1. Experimental measurement, International Journal of Refrigeration, 27 (2004): 736–747
    [13] Zhang S, Xu X, Liu C, Liu X, Dang C. Experimental investigation on the heat transfer characteristics of supercritical CO2 at various mass flow rates in heated vertical-flow tube, Applied Thermal Engineering (2019):
    [14] Yoon S. H, Kim J. H, Hwang Y. W, Kim M. S, Min K, Kim Y. Heat transfer and pressure drop characteristics during the in-tube cooling process of carbon dioxide in the supercritical region. International Journal of Refrigeration, 26 (2003): 857–64.
    [15] Son C. H, Park S. J. An experimental study on heat transfer and pressure drop characteristics of carbon dioxide during gas cooling process in a horizontal tube.
    International Journal of Refrigeration, 29 (2006): 539–46.
    [16] Krasnoshechekov E. A, Protopopov V. S. Experimental study of heat exchange in carbon dioxide in the supercritical range at high temperature drops . Teplofizika Vysokikh Temperature 4 (1996): 389-398.
    [17] Pitla S.S, Groll E.A, Ramadhyani S. New correlation to predict the heat transfer coefficient during in-tube cooling of turbulent supercritical CO2, International Journal of Refrigeration, 25 (2002): 887-895
    [18] Zhao C. R, Zhang Z, Jiang P. X, Xu R. N, Bo H. L. Influence of channel scale on the convective heat transfer of CO2 at supercritical pressure in vertical tubes, International Journal of Heat and Mass Transfer, 126(2018): 201-210
    [19] Liao S. M, Zhao T. S. An experimental investigation of convection heat transfer to supercritical carbon dioxide in miniature tubes, International Journal of Heat and Mass Transfer, 45 (2002): 5025–5034
    [20] Li Z. H, Jiang P. X, Zhao C. R, Zhang Y. Experimental investigation of convection heat transfer of CO2 at supercritical pressures in a vertical circular tube, Experimental Thermal and Fluid Science, 34 (2010): 1162–1171
    [21] Xu R. N, Luo F, Jiang P. X. Buoyancy effects on turbulent heat transfer of supercritical CO2 in a vertical mini-tube based on continuous wall temperature measurements, International Journal of Heat and Mass Transfer, 110 (2017): 576–586
    [22] Jiang P. X, Zhang Y, Xu Y. J, Shi R. F. Experimental and numerical investigation of convection heat transfer of CO2 at supercritical pressures in a vertical tube at low Reynolds numbers, International Journal of Thermal Sciences, 47 (2008): 998–1011
    [23] Kim D. E, Kim M. H. Experimental study of the effects of flow acceleration and buoyancy on heat transfer in a supercritical fluid flow in a circular tube, Nuclear Engineering and Design, 240 (2010): 3336–3349
    [24] Zhang Q, Li H, Kong X, Liu J, Lei X. Special heat transfer characteristics of supercritical CO2 flowing in a vertically-upward tube with low mass flux, International Journal of Heat and Mass Transfer, 122 (2018): 469–482
    [25] Liu G, Huang Y, Wang J, Lv F. Effect of buoyancy and flow acceleration on heat transfer of supercritical CO2 in natural circulation loop, International Journal of Heat and Mass Transfer, 91 (2015): 640–646
    [26] Lei X, Zhang J, Gou L, Zhang Q, Li H. Experimental study on convection heat transfer of supercritical CO2 in small upward channels, Energy, 176 (2019): 119-130
    [27] Bae Y. Y, Kim H. Y. Convective heat transfer to CO2 at a supercritical pressure flowing vertically upward in tubes and an annular channel, Experimental Thermal and Fluid Science, 33 (2009): 329–339
    [28] Shiralkar BS, Griffith P. The deterioration in heat transfer to fluids at supercritical pressure and high heat fluxes. Cambridge, Mass: MIT Engineering Projects Laboratory(1968).
    [29] Bruch A, Bontemps A, Colasson S. Experimental investigation of heat transfer of supercritical carbon dioxide flowing in a cooled vertical tube, International Journal of Heat and Mass Transfer, 52 ( 2009): 2589-2598
    [30] Gupta S, Saltanov E, Mokry S. J, Pioro I, Trevani L, McGillivray D. Developing empirical heat-transfer correlations for supercritical CO2 flowing in vertical bare tubes, Nuclear Engineering and Design, 261 (2013): 116–131.
    [31] Fewster J, Jackson J. D. Experiments on Supercritical Pressure Convective Heat Transfer Having Relevance to SPWR, 2004
    [32] Bae Y. Y, Kim H. Y, Kang D. J. Forced and mixed convection heat transfer to supercritical CO2 vertically flowing in a uniformly heated circular tube, Experimental Thermal and Fluid Science, 34 (2010): 1294-1308
    [33] Huang D, Li W, Heat transfer deterioration of aviation kerosene flowing in mini tubes atsupercritical pressures, International Journal of Heat and Mass Transfer, 111 (2017): 266–278
    [34] Zhang Q, Li H, Kong X, Liu J, Lei X. Special heat transfer characteristics of supercritical CO2 flowing in a vertically-upward tube with low mass flux, International Journal of Heat and Mass Transfer, 122 (2018): 469–482
    [35] Zhao C. R, Zhang Z, Jiang P. X, Xu R. N, Bo H. L. Influence of channel scale on the convective heat transfer of CO2 at supercritical pressure in vertical tubes, International Journal of Heat and Mass Transfer, 126 (2018): 201–210
    [36] Zhang Q, Li H, Kong X, Liu J, Lei X. Special heat transfer characteristics of supercritical CO2 flowing in a vertically-upward tube with low mass flux, International Journal of Heat and Mass Transfer, 122 (2018): 469–482
    [37] Jiang P. X, Zhang Y, Xu Y. J, Shi R. F. Experimental and numerical investigation of convection heat transfer of CO2 at supercritical pressures in a vertical tube at low Reynolds numbers, International Journal of Thermal Sciences, 47 (2008): 998–1011
    [38] Li Z. H, Jiang P. X, Zhao C. R, Zhang Y. Experimental investigation of convection heat transfer of CO2 at supercritical pressures in a vertical circular tube, Experimental Thermal and Fluid Science, 34 (2010): 1162–1171
    [39] Gnielinski, Volker. Neue Gleichungen für den Wärme- und den Stoffübergang in turbulent durchströmten Rohren und Kanälen, Forsch. Ing Wes. 41 (1975): 8–16.
    [40] Jackson J. D. Consideration of the heat transfer properties of supercritical pressure water in connection with the cooling of advanced nuclear reactors, Proceedings of the 13th Pacific Basin Nuclear Conference, (2002): 21–25

    QR CODE