簡易檢索 / 詳目顯示

研究生: 陳璽兆
Chen Hsi-Chao
論文名稱: 以極少督導建立之形容詞歧義辨析器
A Classifier for Word Sense Disambiguation of Adjectives with Minimal Supervision
指導教授: 張俊盛
Jason S. Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊系統與應用研究所
Institute of Information Systems and Applications
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 53
中文關鍵詞: 形容詞歧義辨析搭配字的利用以WordNet為基礎的相似度計算
外文關鍵詞: WSD of adjectives, collocate-based, WordNet-based similarity
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 形容詞的歧義辨析是個尚待解決的重要問題,找到辨析字義的有效方法,可以幫助自然語言處理中的其他研究,例如機器翻譯,更幫助電腦輔助語言學習上的閱讀困難。
    在本論文中,我們提出新的演算法來幫助形容詞的歧義辨析。目前的歧義辨析系統限於名詞,因此著重在利用具歧義性目標字旁邊的所有關鍵字,而沒有考慮到這些關鍵字與目標字是否有句法上的關聯。我們提出一個辨析形容詞字義的方法,並利用句法訊息來擷取形容詞附近的相關字。本論文的做法,延伸Yarowsky (1995)的“one sense per collocation”概念,利用和相似的搭配字一起出現的字義通常都是一致的限制,採自舉法(bootstrapping),發展辨識形容詞字義的模型。做法上先在訓練階段,取得少量已標示字義之目標字形容詞的例句,擷取其各個字義之搭配字,再用這些已知字義與搭配字的資訊,來標示其他未標示之目標字形容詞。標示的方法是利用WordNet的上下位詞關係,計算搭配字和搭配字之間相似度。未標示字義的目標字形容詞就以其搭配字,找到最相似的一組已知字義和搭配字,來決定其字義。
    經過實作,以廣泛使用的人工標示好之語料SemCor為基準,再加上SENSEVAL-2競賽所提供的語料,計算由這些語料擷取出的搭配字在WordNet上下位詞階級中的相關度之後,實驗結果得到一個88%準確率的訓練資料庫;此外以英國國家語料庫(British National Corpus)的資料測試,評估使用搭配字辨析形容詞字義的效率,經人工評估有接近92%的精確率。證明利用自舉法發展辨識形容詞字義的模型是相當有效的。


    We present an approach for disambiguating word senses of an adjective in a given sentence based on collocates and semantic relationships in WordNet. In our approach, we use bootstrapping to learn a list of collocates for each word sense of the adjective from a small amount of sense-tagged samples and a very large untagged corpus.
    The method involves extracting collocates, sense-labeled and unlabeled, of the adjective from the training data and untagged corpus, assigning labels to the unlabeled collocates by measuring WordNet-based similarities between labeled and unlabeled collocates, and building a WSD model from the labeled collocates. At runtime, collocates of the adjective are identified and compared with labeled collocates. The adjective is then disambiguate according to the sense labels of the three most similar collocates.
    We experimented with an implementation of the proposed method using SemCor, Senseval-2 lexical sample training set, and British National Corpus (BNC). Evaluation on collocates of the six adjectives selected from Senseval-2 shows that the WordNet-based bootstrapping approach performs better than previous researches on word sense disambiguation (WSD) of adjectives. Therefore, it is reasonable to conclude that the accuracy of word sense disambiguation of adjectives can be improved by computing WordNet-based similarities among collocates of the adjectives.

    摘要 i ABSTRACT ii 致謝辭 iii Table of Contents iv List of Tables v List of Figures vi Chapter 1 Introduction 1 1.1 Background 1 1.2 Motivation 1 1.3 Collocates of a Word Sense 3 Chapter 2 Related Work 6 Chapter 3 Word Sense Disambiguation 11 3.1 Problem Statement 11 3.2 Training the WSD model 13 3.2.1 Collecting and Preprocessing Examples for Target Words 13 3.2.2 Using Syntactic Rules to Extract Salient Collocations 14 3.2.3 Computing WordNet-based Similarities between Two Collocates 18 3.2.4 Deriving Relative Collocates for Each Sense of the Target Word 21 3.3 Runtime Word Sense Disambiguation 24 Chapter 4 Experimental Setting 26 4.1 Training 26 4.2 Evaluation Metrics 34 4.2.1 Metric for Tagged Collocates in the Training Set 34 4.2.2 Metric for WSD of Adjectives 36 4.3 Evaluation Results 37 4.3.1 Evaluation for Tagged Collocates in the Training Set 37 4.3.2 Evaluation for Disambiguation of Target Adjectives 40 Chapter 5 Conclusion and Future Work 45 5.1 Conclusion 45 5.2 Future Work 46 References 47 Appendix A- Glosses of the 6 Adjectives in WordNet 51 Appendix B- Query for Collocates of blind in WordSketch 53

    Black, Ezra: 1988, ‘An experiment in computational discrimination of English word senses’, in IBM Journal of Research and Development archive Volume 32 , Issue 2, pp. 185 – 194.
    Bonnie J. Dorr and Pamela W. Jordan and John W. Benoit: 1998, ‘A survey of current paradigms in machine translation’, in Advances in Computers, Volume 49.
    Bruce R. and Wiebe J.: 1994, ‘Word-sense disambiguation using decomposable models’, in Proceedings 32nd Annual Meeting of the Association for Computational Linguistics, pp. 139-146.
    A. Budanitsky and G. Hirst: 2005, ‘Evaluating WordNet-based measures of lexical semantic relatedness’, in the Proceedings of Computational Linguistics, ACL, v.1, n.1, pp. 1 - 49.
    H. Calvo and A. Gelbukh: 2004, ‘Unsupervised Learning of Ontology-Linked Selectional Preferences’, in CLARP, pp. 418 – 424.
    C. Fellbaum: 1998, ‘WordNet, an electronic lexical database’, in the MIT Press.
    W. A. Gale, K. W. Church, and D. Yarowsky: 1992, ‘A method for disambiguating word senses in a large corpus’, in Computers and the Humanities, 26: pp. 415 - 439.
    M. Hearst: 1991, ‘Noun homograph disambiguation using local context in large corpora’, in Proceedings of the 7th Annual Conference of the University of Waterloo Centre for the New OED and Text Research, pp. 1-19.
    J. Jiang and D. Conrath: 1997, ‘Semantic similarity based on corpus statistics and lexical taxonomy’, in Proceedings of International Conference on Research in Computational Linguistics (ROCLING X), Taiwan.
    A. Kilgarriff and D. Tugwell: 2001, ‘WORD SKETCH: Extraction and display of significant collocations for lexicography’, in the Proceedings of Collocations Workshop “COLLOCATION: Computational Extraction, Analysis and Exploitation”, ACL, pp.32 – 38.
    C. Leacock, M. Chodrow, and GA. Miller: 1998, ‘Using corpus statistics and WordNet relations for sense identification’, in Computational Linguistics, v.24, n.1, pp.147 – 165.
    C. Leacock, G. Towell, and E. Voorhees: 1993a, ‘Corpus-based statistical sense resolution’, in Proceedings of the ARPA Human Language Technology Workshop, pp. 260-265.
    C. Leacock, G. Towell, and E. Voorhees: 1993b, ‘Towards Building Contextual Representations of Word Senses Using Statistical Models’, In Proceedings, SIGLEX workshop: Acquisition of Lexical Knowledge from Text, ACL, pp. 10 – 20.
    M. Lesk: 1986, ‘Automatic sense disambiguation using machine readable dictionaries: how to tell a pine cone from an ice cream cone’, in Proceedings of the 5th annual international conference on Systems documentation, pp.24 - 26.
    Luk, Alpha K.: 1995, ‘Statistical sense disambiguation with relatively small corpora using dictionary definitions’, in Proceedings of the 33rd Annual Meeting of ACL, pp.181 - 188.
    M. Merkel & M. Andersson: 2001,’Combination of contextual features for word sense disambiguation: LIU-WSD’, in Proceedings of the SENSEVAL-2.
    R. Mihalcea and Dan I. Moldovan: 1999, ‘Automatic acquisition of sense tagged corpora’, in Proceedings of the 12th International Florida Artificial Intelligence Research Society Conference, pp. 293 – 297.
    Rada Mihalcea: 2002, ‘Word sense disambiguation with pattern learning andautomatic feature selection’, in Journal of Natural Language and Engineering (JNLE) 1 (1), pp.1 – 15.
    G. Miller, C. Leacock, T. Randee and R. Bunker: 1993, ‘A semantic concordance’, in Proceedings of the 3rd DARPA Workshop on Human Language Technology, pp. 303 – 308.
    G. Miller: 1995, ‘WordNet: a lexical database’, in Communication of the ACM, Vol. 38, No.11, pp. 39 - 41.
    S. Mohammad and T. Pederson: 2004, ‘Combining lexical and syntactic features for supervised word sense disambiguation’, in Proceedings of the Conference on Computational Natural Language Learning (CoNLL), pp. 25 - 32.
    Nakamura, Jun-Ichi and Makoto Nagao: 1988, ‘Extraction of semantic information from an ordinary English dictionary and its evaluation’, in Proceedings of the 12th International Conference on Computational Linguistics, COLING'88, pp. 459 - 464.
    N. Ide and J. Véronis: 1998, ‘Introduction to the special issue on word sense disambiguation: The state of the art’, in Computational Linguistics, 24(1): pp. 1 - 40.
    G. Paliouras and V. Karkaletsis: 2000, ‘Learning rules for large-vocabulary word sense disambiguation: a comparison of various classifiers’, in Proceedings of the 2nd International Conference on Natural Language Processing, pp. 383 – 394.
    Patrick, Archibald B.: 1985, ‘An exploration of abstract thesaurus instantiation’, in M. Sc. thesis, University of Kansas, Lawrence, KS.
    P. Resnik and D. Yarowsky: 1997, ‘A perspective on word sense disambiguation methods and their evaluation’, in Proceedings of ACL SIGLEX Workshop on Tagging Text with Lexical Semantics, Why, What and How?.
    H. Schütze: 1992, ‘Dimensions of meaning’, in Proceedings of the 1992 ACM/IEEE conference on Supercomputing, pp.787-796.
    Wilks, Yorick A., Dan Fass, Cheng-Ming Guo, James E. MacDonald, Tony Plate, and Brian A. Slator: 1990, ‘Providing machine tractable dictionary tools.’ In Machine Translation, Vol. 5, No. 2: pp. 99 - 154.
    Z. Wu and M. Palmer: 1994, ‘Verb semantics and lexical selection’, in Proceedings of the 32nd Annual Meeting of the Association for Computational Linguistics, pp. 133 – 138.
    D. Yarowsky: 1993, ‘One sense per collocation’, in Proceedings of ARPA Human Language Technology Workshop, pp. 266 - 271.
    D. Yarowsky: 1995, ‘Unsupervised word sense disambiguation rivaling supervised methods’, in Proceedings of the 33rd conference on the Association of Computational Linguistics, pp. 189 – 196.
    Wilks, Y. and M. Stevenson: 1996, ‘The grammar of sense: Is word sense tagging much more than part-of-speech tagging?’, in Technical report, University of Sheffield, UK.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE