簡易檢索 / 詳目顯示

研究生: 梁嘉堯
Chia You Liang
論文名稱: 微流道冷凝熱傳研究
A Study of Condensation Heat Transfer in Microchannels
指導教授: 潘欽
Chin Pan
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 70
中文關鍵詞: 微流道冷凝
外文關鍵詞: Microchannel, condensation
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文探討水蒸汽在水力直徑50、60、67μm矩型矽質微通道陣列內之冷凝現象,觀察冷凝雙相流譜及分析冷凝熱傳性能與質量通率、蒸汽入口溫度、水力直徑及注射流發生位置等參數的關係,接著探討完全發展環狀流之熱傳性質,並與傳統液膜冷凝熱傳經驗公式比較。
    研究結果顯示,蒸汽在流道內之所出現的流譜主要有霧狀-環狀流、注射流、氣泡流及長型彈狀流;隨著蒸氣質量流率及蒸氣入口溫度的增加,注射流將會在流道更下游處發生。
    霧狀-環狀流、注射流、氣泡流及長型彈狀流皆出現於流道內之平均冷凝熱通率隨著蒸汽入口溫度及質量流率的增加而增加;另外,注射流的發生位置會對蒸汽冷凝之平均熱通率造成相當的影響。在完全發展環狀流方面,蒸汽入口溫度和質量通率亦對熱通率的造成影響。
    本次研究成果與Chato,1962和Shah,1979之冷凝熱傳經驗公式比較。結果顯示,Chato的熱傳模式將高估實驗值約1.5倍,而Shah的經驗公式預測結果略高於實驗值。


    頁次 摘要………………………………………………………………I 誌謝………………………………………………………………II 目錄………………………………………………………………III 圖目錄……………………………………………………………VI 符號對照表………………………………………………………VII 第一章 緒論………………………………………………………1 1.1 冷凝…………………………………………………………1 1.2 文獻回顧……………………………………………………3 1.2.1 冷凝初始機制相關文獻………………………………………3 1.2.2 傳統冷凝研究相關文獻………………………………………4 1.2.3 微尺度管路冷凝研究相關文獻………………………………8 1.2.4 過熱蒸氣研究相關文獻………………………………………13 1.3 研究動機……………………………………………………14 1.4 研究目的……………………………………………………15 1.5 論文架構……………………………………………………16 第二章 實驗設備與步驟…………………………………………17 2.1 實驗環路……………………………………………………17 2.1.1 測試段………………………………………………………18 2.1.2 蒸發段………………………………………………………19 2.1.3 高效能層析幫浦……………………………………………20 2.1.4 濾膜…………………………………………………………20 2.1.5 冷卻流體推動設備…………………………………………21 2.2 影像與數據擷取系統………………………………………22 2.2.1 溫度量測……………………………………………………23 2.2.2 壓力量測……………………………………………………23 2.2.3 數據擷取系統………………………………………………24 2.2.4 影像擷取系統………………………………………………24 2.3 實驗方法與步驟……………………………………………25 2.3.1 實驗方法………………………………………………………25 2.3.2 實驗步驟………………………………………………………25 2.4 實驗熱傳分析…………………………………………………26 第三章 矽質微通道製作程序……………………………………27 3.1 微流道製程原理……………………………………………27 3.1.1 微影製程……………………………………………………27 3.1.2 深層反應離子蝕刻…………………………………………27 3.1.3 準分子雷射加工……………………………………………27 3.1.4 硬烤光阻去除……………………………………………28 3.1.5 陽極接合……………………………………………………28 3.2 微流道製作流程……………………………………………30 3.3 實驗流道參數………………………………………………36 第四章 實驗結果與討論…………………………………………37 4.1 冷凝流譜……………………………………………………37 4.1.1 注射流發生位置………………………………47 4.2 平均冷凝熱通率……………………………………………49 4.2.1 蒸氣入口溫度的影響..…………………………49 4.2.2 水力直徑的影響..………………………………51 4.2.3 注射流發生位置的影響..………………………52 4.3 完全發展環狀流熱傳分析…………………………………54 4.4 傳統冷凝熱傳公式比較……………………………………57 4.4.1 傳統管路冷凝經驗公式..………………………57 4.4.2 實驗數據比較結果..……………………………59 4.5 冷凝熱傳經驗公式..……………………………………60 第五章 結論與建議…………………………………………………62 5.1 結論…………………………………………………………62 5.2 未來建議……………………………………………………63 參考文獻………………………………………………………………65

    (1)J. W. Rose, “On interphase matter transfer, the condensation coefficient and dropwise condensation”, Proc. R. Soc. Lond., A. 411, pp. 305-311 , 1987
    (2)Jakob M, “Heat transfer in evaporation and condensation”, Mech Eng. Vol. 58, pp. 729–739, 1936
    (3)Tammann G, Boehme W, “Die Zahl der wassertrcpfchen bei der kondensation auf verschiedenen festen stiffen”, Ann Physik, Vol. 5, pp. 77–80, 1935
    (4)A. Umur, P. Griffith, “Mechanism of Dropwise Condensation”, ASME, Journal Heat Transfer, Vol. 87, pp. 275-282, 1965
    (5)Y. Song, D. Xu, J. Lin, S. Tsian, “A Study on the Mechanism of Dropwise Condensation”, International Journal of Heat and Mass Transfer, Vol. 34, No. 11, pp. 2827-2831, 1991
    (6)L. Tianqing, M. Chunfeng, S. Xiangyu, and X. Songbai, “Mechanism Study on Formation of Initial Condensate Droplets”, AIChE Journal, Vol. 53, No. 4, pp. 1050-1055, 2007
    (7)W. A. Nusselt, “The surface Condensation of Water Vapor”, Zieschrift Ver. Deut. Ing., Vol.60, pp. 541-546, 1916
    (8)Chato, J. C., ”Laminar Condensation Inside Horizontal and Inclined Tubes”, J. ASHRAE, 4, 52, 1962
    (9)Y. Yan, Tsing-Fa Lin, “Condensation heat transfer and pressure drop of refrigerant R-134a in a small pipe”, International Journal of Heat and Mass Transfer, Vol. 42, pp.697-708, 1999
    (10)Bu-Xuan Wang, Xiao-Ze Du, “Study on laminar film-wise condensation for vapor flow in an inclined small/mini-diameter tube”, International Journal of Heat and Mass Transfer, Vol. 43, pp. 1859-1868, 2000
    (11)A. Gavallini, G. Censi, D. Del Col, L. Doretti, G. A. Longo, L. Rossetto, “Experimental investigation on condensation heat transfer and pressure drop of new HFC refrigerants (R134a, R125, R32, R410A, R236ea) in a horizontal smooth tube”, International Journal of Refrigeration, Vol. 24, pp. 73-87, 2001
    (12)W. W. Wang, T. D. Radcliff, R. N. Christensen, “A condensation heat transfer correlation for millimeter-scale tubing with flow regime transition”, Experimental Thermal and Fluid Science, Vol. 26, pp. 473-485, 2002
    (13)D. Jung, K. H. Song, Y. Cho, S. J. Kim, “Flow condensation heat transfer coefficients of pure refrigerants”, International Journal of Refrigeration, Vol. 26, pp. 4-11, 2003
    (14)J. W. Coleman, S. Garimella, “Two-phase flow regimes in round, square and rectangular tubes during condensation of refrigerant R134a”, International Journal of Refrigeration, Vol. 26, pp. 117-128, 2003
    (15)A. Cavallini, D. D. Col, L. Doretti, M. Matkovic, L. Rossetto, C. Zilio, “Condensation Heat Transfer and Pressure Gradient Inside Multiport Minichannels”, Heat Transfer Engineering, Vol. 26, pp.45-55, 2005
    (16)A. Cavallini, L. Doretti, M. Matkovic, L. Rossetto, “Update on Condensation Heat Transfer and Pressure Drop inside Minichannels”, Heat Transfer Engineering, Vol. 27, pp. 74-87, 2006
    (17)M. Y. Wen, C. Y. Ho, J. M. Hsieh, “Condensation heat transfer and pressure drop characteristics of R-290 (propane), R-600 (butane), and a mixture of R-290/R-600 in the serpentine small-tube bank”, Applied Thermal Engineering, Vol. 26, pp. 2045-2053, 2006
    (18)R. Yun, J. Heo, Y. Kim, “Effects of surface roughness and tube materials on the filmwise condensation heat transfer coefficient at low heat transfer rates”, International Communications in Heat and Mass Transfer, Vol. 33, pp. 445–450, 2006
    (19)K. Y. Lee, M. H. Kim, “Experimental and empirical study of steam condensation heat transfer with a noncondensable gas in a small-diameter vertical tube”, Nuclear Engineering and Design, Vol. 238, pp207-216, 2007
    (20)J. S. Shin, M. H. Kim, “An experimental study of condensation heat transfer inside a mini-channel with a new measurement technique”, International Journal of Multiphase Flow, Vol. 30, pp.311-325, 2004
    (21)H.Y. Wu, P. Cheng, “Condensation Flow Patterns in Silicon Microchannels”, International Journal of Heat and Mass Transfer, Vol. 48, pp. 2186-2197, 2005
    (22)Y. Chen, P. Cheng, 2005, “Condensation of Steam in Silicon Microchannels” , International Journal of Heat and Mass Transfer, Vol. 32, pp.175-183, 2005
    (23)P. Chen, H. Y. Wu, F. J. Hong, “Phase-Change Heat Transfer in Microsystems”, ASME, Journal of Heat Transfer, Vol. 129, pp. 101-107, 2007
    (24)X. Quan, P. Cheng, H. Wu, “Transition from annular flow plug/slug flow in condensation of steam in microchannels”, International Journal Heat and Mass Transfer, Vol. 51, pp. 707-716, 2008
    (25)S. Garimella, “Condensation Flow Mechanisms in Microchannels:Basic for Pressure Drop and Heat Transfer Models”, Heat Transfer Engineering, Vol. 25, pp. 104-116, 2004
    (26)S. Garimella, A. Agarwal, J. D. Killion, “Condensation Pressure Drop in Circular Microchannels”, Heat Transfer Engineering, Vol. 26, pp.28-35, 2005
    (27)T. M. Bandhauer, A. Agarwal, S. Garimella, “Measurement and Modeling of Condensation Heat Transfer Coefficients in Circular Microchannels”, Transactions of the ASME, Journal of Heat Transfer, Vol. 128, pp. 1050-1059, 2006
    (28)B. Mederic, M. Miscevic, V. Platel, P. Lavieille, J. L. Joly, “Experimental study of flow characteristics during condensation in narrow channels: the influence of the diameter channel on structure patterns”, Superlattices and Microstructures, Vol. 35, pp.573-586, 2003
    (29)B. Mederic, P. Lavieille, M. Miscevic, “Heat transfer analysis according to condensation flow structures in a minichannel”, Experimental Thermal and Fluid Science, Vol. 30, pp. 785-793, 2006
    (30)H. L. Gualous, B. Mecheri, “Unsteady steam condensation flow patterns inside a miniature tube”, Applied Thermal Engineering, Vol. 27, 2007
    (31)T. S. Zhao, Q. Liao, “Theoretical analysis of film condensation heat transfer inside vertical mini triangular channels”, International Journal of Heat and Mass Transfer, Vol. 45, pp. 2829-2842, 2002
    (32)H. S. Wang, J. W. Rose, “A Theory of Film Condensation in Horizontal Noncircular Section Microchannels”, Transactions of the ASME, Journal of Heat Transfer, Vol. 127, pp. 1096-1105, 2005
    (33)H. S., John W. Rose, “Film condensation in horizontal microchannels:Effect of channel shape”, International Journal of Thermal Sciences, Vol. 45, pp. 1205-1212, 2006
    (34)W. J. Minkowycz, E. M. Sparrow, “ The effect of superheating on condensation heat transfer in a forced convection boundary layer flow”, International Journal of Heat and Mass Transfer, Vol. 12, pp.147-154, 1969
    (35)J. Mitrovic, “Effect of vapor superheat and condensate subcooling on laminar filmwise condensation”, Transaction of the ASME, Vol. 122, pp. 192-196, 2000
    (36)Kosky, P. G., and Staub, F. W., Local Condensing Heat Transfer Coefficients in the Annular Flow Regime. AIChE J. , Vol. 17, pp. 1037–1043, 1971.
    (37)E.J. Le Fevre, J.W. Rose, “ A theory of heat transfer by dropwise condensation”, Proc. of 3rd Int. Heat Transfer Conf., Vol. 2, p.p. 362, 1966
    (38)T Fujii, H Imura, “Natural convection heat transfer from a plate with arbitrary inclination”, International Journal of Heat and Mass Transfer, 1972
    (39)M.M. Shah, “A general correlation for heat transfer during film condensation inside pipes, International Journal Heat Mass Transfer , Vol. 22, pp. 547–556, 1979
    (40)Dittus, F. W., L. M. K. Boelter., Univ Calif. (Berkeley) Pub. Eng, Vol. 2, pp. 443, 1930
    (41)A. Cavallini, G. Censi, D. Del Col, L. Doretti, G.A. Longo, L. Rossetto, C. Zilio, “Condensation inside and outside smooth and enhanced tubes — a review of recent research”, International Journal of Refrigeration, Vol. 26, pp. 373-392, 2003
    (42) J. W. Rose, “Condensation heat transfer”, Heat and Mass Transfer, Vol. 35, pp. 479-485, 1999
    (43) Suo, Griiffth, “Two-phase flow in capillary tubes”, Tran. ASME, Journal Heat Transfer, pp576-582, 1964

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE