簡易檢索 / 詳目顯示

研究生: 楊融華
Yang, Jung-Hua
論文名稱: 馬鞍山電廠TRACE模式發展與設計基準喪失冷卻水事故分析之應用
Development of Maanshan TRACE Model and Application of Design Basis LOCA Analysis
指導教授: 施純寬
Shih, Chunkuan
王仲容
Wang, Jong-Rong
口試委員: 施純寬
王仲容
白寶實
林浩慈
鄭憶湘
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 160
中文關鍵詞: 馬鞍山電廠TRACE喪失冷卻水事故
外文關鍵詞: Maanshan, TRACE, LOCA
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 馬鞍山電廠為三迴路壓水式反應器電廠,由西屋公司設計製造,廠區內有兩座運轉機組,兩座機組設計100%熱功率為2775MW。喪失冷卻水事故(Loss of Coolant Accident, LOCA)為輕水式反應器設計基準事故中其中一項重要的安全分析,雖然電廠發生破口喪失冷卻水事故的機率極低,但安全系統設計上仍然要確保當喪失冷卻水事故發生時電廠有足夠的冷卻能力以防止爐心燃料熔毀。因此探討台灣馬鞍山電廠小功率提昇後若發生冷卻水流失事故,電廠是否能維持法規中所要求的燃料護套溫度不能超過2200℉之規定,對於經濟貢獻具有相當的價值性。本研究首先利用分離效應測試(Separate Effects Tests),進行一些重要的熱水流現象的驗證以及分析探討,如臨界流(Critical Flow)、逆向流(Countercurrent Flow)、緊急爐心注水旁通(ECC Bypass)等,接著建立馬鞍山電廠整廠TRACE分析模式,並利用電廠起動測試數據以及FSAR報告數據來驗證馬鞍山電廠整廠TRACE分析模式的準確性。此外,核研所為了研究西屋三迴路壓水式反應器(特別是針對馬鞍山電廠)的熱流現象而建造了IIST實驗設施,因此在本研究中也建立了IIST TRACE分析模式並利用IIST的實驗數據來證明其模式模擬的準確性。IIST破口實驗分析的經驗也回饋於馬鞍山電廠發生喪失冷卻水事故的安全分析上。
    在經過前述的評估與驗證後,本研究利用馬鞍山電廠TRACE模式進行喪失冷卻水事故之分析,分析案例包含大破口事故以及小破口事故。 安全分析中,針對電廠許多重要熱水力參數(例如爐心水位、破口流率、系統壓力、和燃料護套尖峰溫度等)做計算與討論。破口喪失冷卻水事故分析結果顯示馬鞍山電廠TRACE分析模式不僅能預測電廠熱流現象與行為,更能提供評估燃料護套尖峰溫度較大的餘裕。


    The Maanshan nuclear power plant operated by Taiwan Power Company is a Westinghouse PWR. The rated core thermal power is 2775 MW. The Loss of coolant accident (LOCA) is one of the design basis accidents (DBAs) in light water reactors. Although a LOCA is considered very unlikely to happen, the safety systems must be designed to secure adequate cooling of the reactor core during the accident to prevent the meltdown of the core. By the separate effects tests, several important phenomena of thermal-hydraulic, such as critical flow, CCFL, and ECC bypass, are discussed and verified. Then each separate models are integrated to the Maanshan TRACE model. The Maanshan TRACE model is also verified by referring to the start-up test data and FSAR data. Furthermore, IIST facility had been established for safety studies of the Westinghouse three- loops PWR, especially for Maanshan nuclear power plant. The IIST TRACE model also has been established and verified its accuracy by referring ot the test data of IIST facility LOCA experiments. The experiences of IIST LOCA analysis are used in the Maanshan LOCA analysis.
    After verifications, this study uses the Maanshan TRACE model to analysis the two types of LOCA, LBLOCA and SBLOCA. Several important thermal-hydraulic parameters, such as core water level, break flow rate, system pressure, and peak cladding temperature, are calculated and discussed in this study. LOCA analytical results indicate that the Maanshan TRACE model predicts not only the behaviors of important plant parameters in consistent trends with the Maashan FSAR data, but also provides a greater margin for the PCT evaluation.

    中文摘要 i 英文摘要 ii 誌謝 iii 目錄 iv 表目錄 vii 圖目錄 viii 第一章 緒論 1 1.1 研究目的與方法 1 1.2 馬鞍山電廠介紹 2 1.3 IIST實驗設施介紹 4 1.4 分析程式介紹 5 第二章 研究背景 11 2.1 喪失冷卻水事故分析之重要性 11 2.2 喪失冷卻水事故分析法規與發展 12 2.3 近年來國際間LOCA研究成果 13 第三章 TRACE模式熱水力分離效應文獻回顧與應用評估 17 3.1 分離效應研究目的 17 3.2 臨界流模式(Critical Flow)分析 17 3.2.1 臨界流評估與驗證 17 3.2.2 馬鞍山電廠臨界流模式評估與分析 19 3.3 逆向流限制(CCFL)模式分析 20 3.3.1 逆向流限制評估與驗證 20 3.3.2 馬鞍山電廠不同區域之CCFL研究 21 3.4 緊急爐心冷卻系統(ECCS)模式分析 26 3.4.1 ECC旁通之驗證 26 3.4.2 馬鞍山電廠ECC評估與分析 31 第四章 整廠分析評估與結果 63 4.1 整廠模式 63 4.1.1 馬鞍山電廠模式介紹 63 4.1.2 功率模式建立 64 4.2 起動測試分析案例 66 4.2.1 負載降載測試(PAT 49) 66 4.2.2 汽機跳脫測試(PAT50) 67 4.2.3 100%功率棄載測試(PAT51) 69 4.3 FSAR分析案例 71 4.3.1 部分喪失水流(PLOF)事故案例與分析結果討論 72 4.3.2 完全喪失水流(CLOF)事故案例與分析結果討論 73 第五章 IIST破口實驗驗證與熱流現象分析 105 5.1 IIST SBLOCA實驗與驗證 105 5.2 IIST CCFL驗證與靈敏度分析 106 5.3 環封導通現象與分析 109 第六章 破口評估與分析結果 127 6.1 馬鞍山電廠大破口喪失冷卻水事故案例與分析結果討論 127 6.1.1 馬鞍山電廠LBLOCA評估與分析 128 6.1.2 馬鞍山電廠LBLOCA靈敏度分析 131 6.2 馬鞍山電廠小破口喪失冷卻水事故案例與分析結果討論 133 6.2.1 馬鞍山電廠SBLOCA評估與分析 133 6.2.2 馬鞍山電廠SBLOCA靈敏度分析 134 第七章 結論與未來方向 153 參考文獻 155 附錄A 發表國際會議論文與期刊論文 159

    1. 台灣電力公司第三核能發電廠, “核能發電訓練基本教材:壓水式反應器介紹”,(1995年)。
    2. Chang, C. Y., Lee, C. H., Liu, T. J., and Chan, Y. K., “Experimental investigation of loss of feedwater with bleed and feed operation”, Nucl. Sci. J. , Vol. 33, 318,1996.
    3. Ferng, Y. M. and Lee, C. H., “Numerical simulation of atural circulation experiments conducted at IIST facility”, Nucl. Eng. Des., Vol. 31, 83, 1994.
    4. Ferng, Y. M. and Lee, C. H., “A comparison of the RELAP5/MOD3 code with IIST natural circulation experiments”, Nucl. Technol., Vol. 111, 34, 1995.
    5. Lee, C. H., “INER Integral System Test (IIST) facility for simulating the Maanshan nuclear power plant—Investigation of PWR Natural Circulation”, Nucl. Sci. J., Vol.31, 83, 1994.
    6. Lee, C. H., Liu, T. J., Hong, W. T., Huang, I. M., Chan, Y. K., and Chang, C. J., “Experimental investigation of PWR small break loss-of-coolant accidents in IIST facility”, Nucl. Sci. J., Vol. 33, 251, 1996.
    7. Lee, C. H., Liu, T. J., Way., Y. S., and Hsia, D. Y., “Investigation of mid-loop operation with loss of RHR at INER Integral System Test (IIST) facility”, Nucl. Eng. Des., Vol. 163, 349, 1996.
    8. Lee, C. H., Huang, I. M., Chang, C. J., Liu, T. J., and Ferng, Y. M., “Using an IIST SBLOCA experiment to assess RELAP5/MOD3.2”, Nucl. Technol., Vol. 126, 48, 1999.
    9. C. H. Lee, T. J. Liu, W. T. Hong, I.M.Huang, Y. K. Chan, and C. J. Chang, “Experimental investigation of PWR small break loss-of-coolant accidents in IIST facility,” Journal of Nuclear Science and Technology, vol. 33, pp. 251–259, 1996.
    10. C. H. Lee, T. J. Liu, Y. S. Way, andD. Y.Hsia, “Investigation of mid-loop operation with loss of RHR at INER integral system test (IIST) facility,” Nuclear Engineering and Design, vol. 163, no. 3, pp. 349–358, 1996.
    11. C. H. Lee, “INER integral system test (IIST) facility for simulating the Maanshan nuclear power plant—investigation of PWR natural circulation,” Journal of Nuclear Science and Technology, vol. 31, p. 83, 1994.
    12. Y. M. Ferng and C. H. Lee, “Numerical simulation of natural circulation experiments conducted at the IIST facility,” Nuclear Engineering and Design, vol. 148, no. 1, pp. 119–128, 1994.
    13. Y. M. Ferng and C. H. Lee, “Comparison of the RELAP5/MOD3 code with the IIST natural circulation experiments,”Nuclear Technology, vol. 111, no. 1, pp. 34–45, 1995.
    14. Division of Risk Assessment and Special Projects Office of Nuclear Regulatory Research U. S. Nuclear Regulatory Commission, “TRACE V5.0 USER’S MANUAL, VOLUME 1 & 2,” August 2007.
    15. Division of Risk Assessment and Special Projects Office of Nuclear Regulatory Research U. S. Nuclear Regulatory Commission, “TRACE V5.0 THEORY MANUAL,” August 2007.
    16. Gonza’ lez, I., Queral, C., Expo’ sito, A., “Analysis of the cooling capability of steam generators during the loss of residual heat removal system at midloop operation with closed primary system”, Annals of Nuclear Energy, Vol. 33, 1102–1115, 2006.
    17. Gonza’ lez, I., Queral, C., Expo’ sito, A., “Phenomenology during the loss of residual heat removal system at midloop conditions with pressurizer PORVs open: Associated boron dilution.” Annals of Nuclear Energy, Vol. 34, 166–176, 2007.
    18. Jasiulevicius, A., Zerkak, O., Macian-Juan, R., “Simulation of OECD/NEA ROSA test 6.2 using TRACE”, Proceedings of ICONE15: 15th International Conference on Nuclear Engineering, ICONE15-10192, 2007.
    19. Jaeger, W., Lischke, W., Espinoza, V.H.S., “Safety related investigations of the VVER-1000 reactor type by the coupled code system TRACE/PARCS”, Proceedings of ICONE15: 15th International Conference on Nuclear Engineering, ICONE15-10438, 2007.
    20. Barten, W., et al., “Analysis of the capability of system codes to model cavitation water hammers: Simulation of UMSICHT water hammer experiments with TRACE and RELAP5”, Nuclear Engineering and Design, Vol.238, 1129-1145, 2008.
    21. Applied Programming Technology, Inc., Symbolic Nuclear Analysis Package (SNAP) User's Manual, 2007.
    22. NUREG-0558, " Population Exposure and Health Impact of the Accident at the Three Mile Island Nuclear Station", 1979.
    23. NUREG-0600, " Investigation into the March 28, 1979, Three Mile Island Accident", 1979.
    24. NUREG/CR-1250, " Three Mile Island - A report to the Commission and to the Public", 1980.
    25. Jablon, S., Hrubec, Z., & Boice, J. D., "Cancer in populations Living Near Nuclear Facilities", JAMA, 265, 1403, 1991.
    26. W.L. Riebold, M. Reocreux, and O.C. Jones. Blowdown phase. In Owen C. Jones, Jr., editor, Nuclear Reactor Safety Heat Transfer, pages 325–378. Hemisphere Publishing Corporation, 1981.
    27. L.S. Tong and Joel Weisman. Thermal analysis of pressurized water reactors. American Nuclear Society, 1996.
    28. F. D’Auria and P. Vigni. Two-Phase Critical Flow Models. Technical Report CSNI Report 49, Universit`a degli Studi di Pisa, Istituto di Impianti Nucleari, 5 1980.
    29. M.-S. Chung, S.-B. Park, and H.-K. Lee. Sound speed criterion for two-phase critical flow. Journal of Sound and Vibration, 276:13–26, 2004.
    30. OECD Nuclear Energy Agency. OECD/NEA-CSNI Separate Effects Test Matrix for Thermal-Hydraulic Code Validation Volume I. Technical Report NEA/CSNI/R(93) 14, 1993.
    31. Compendium of ECCS Research for Realistic LOCA Analysis. Technical Report NUREG-1230, U.S. Nuclear Regulatory Commission, December 1988.
    32. Appendix A of Compendium of ECCS Research for Realistic LOCA Analysis. Technical Report NUREG-1230A, U.S. Nuclear Regulatory Commission, December 1988.
    33. Idaho National Engineering and Environmental Laboratory. Test Area North factsheet.
    34. Y. Kukita, K. Tasaka, “The effects of break location on PWR small break LOCA: Experimental study at the ROSA-IV LSTF”, Nuclear Engineering and Design 122 (255-262), 1990.
    35. The Marviken Full Scale Critical Flow Tests, Description of the test facility. Technical Report MXC-101, December 1979.
    36. C. Addabbo and A. Annunziato. The LOBI Test Matrix.
    37. U. S. Nuclear Regulatory Commission, "The Marviken Full Scale Critical Flow Tests, Summary Report,", NUREG./CR-2671, MXC-301, May 1982.
    38. "Assessment of Modernization and Integration of BWR Components and Spatial Kinetics in the TRACE, Version 3690, Code," U. S. Nuclear Regulatory Commission, NUREG-1752,December 200
    39. S. G. Bankoff, R. S. Tankin, M. C. Yuen and C. L. Hsieh, "Countercurrent Flow of Air/Water and Steam/Water Through a Horizontal Perforated Plate", Int. J. Heat Mass Transfer, Vol. 24, No. 8 pp 1381-1395, 1981.
    40. C. L. Hsieh, S. G. Bankoff, R. S. Tankin, and M. C. Yuen, "Countercurrent Air/Water and Steam/Water Flow above a Perforated Plate", NUREG/CR-1808, November 1980.
    41. I. Dilber, S. G. Bankoff, R. S. Tankin, M. C. Yuen, "Countercurrent Steam/Water Flow Above a Perforated Plate-Vertical Injection of Water", NUREG/CR-2323, September 1981.
    42. J. C. Lin, V. Martinez and J. W. Spore, "TRAC-PF1/MOD2 Developmental Assessment Manual", Los Alamos National Laboratory, TRAC DAM-Ver. 5.4, August 20, 1993.
    43. Wongwises, S., 1996. Two-phase countercurrent flow in a model of a pressurized water reactor hot leg. Nuclear Engineering and Design 166 (2), 121-133.
    44. S. G. Bankoff, R. S. Tankin, M. C. Yuen, and C. L. Hsieh, “Countercurrent Flow of Air/Water and Steam/Water through a Horizontal Perforated Plate,” International Journal ofHeat and Mass Transfer, 24:8, pp. 1381–1395 (1981).
    45. S. S. Kutateladze, Izv. Akad. Nauk SSSR, Otd. Tekhn. Nauk, Vol. 8, p. 529 (1951).
    46. G. B. Wallis, One Dimensional Two Phase Flow (McGraw-Hill Book Company, New York, 1969).
    47. Yi-Hsiang Cheng, Chunkuan Shih, Jong-Rong Wang, Hao-Tzu Lin, “An investigation of steam–water countercurrent flow model in TRACE,” Annals of Nuclear Energy 37 (2010) 1378–1383.
    48. “UPTF: Program and System Description”, U9 414/88/023, UB KWU, Nov., 1988.
    49. “UPTF Test Instrumentation - Measure System Identification, Engineering Units and Computed Parameters”, R 515/85/23, UB KWU, Sep., 1985.
    50. "Summary of Results from the UPTF Downcomer Separate Effects Tests, Comparison to Previous Scaled Tests, and Application to U.S. Pressurized Water Reactor”, MPR Associates, INC., July, 1990.
    51. “UPTF Test No. 6 Downcomer Separate Effect Test, Quick Look Report”, SIMENS AG, Mar. 1989.
    52. Taiwan Power Company. “Final safety analysis report of Maanshan nuclear power station Units 1 & 2.” Taipower Report, 1982.
    53. Bordelon, F.M.; et al.: SATAN-VI Program: Comprehensive Space Time Dependent Analysis of Loss of Coolant. WCAP-8302, June, 1974 (Proprietary) and WCAP-8306, June, 1974.
    54. Young, M.Y.; et al.: The 1981 Version of Westinghouse ECCS Evaluation Model Using the BASH Code. WCAP-10266-P-ARevision 2 (Proprietary) and WCAP-11524-A (Non-Proprietary), March 1987.
    55. Bordelon, F. M.; Murphy, E. T.: Containment Pressure Analysis Code (COCO). WCAP-8327, June, 1974 (Proprietary) and WCAP- 8326, June, 1974.
    56. Bordelon, F.M.; et al.: LOCTA-IV Program: Loss of Coolant Transient Analysis. WCAP-8301, June, 1974 (Proprietary) and WCAP- 8305, June, 1974.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE