研究生: |
劉禮銘 Liu, Li Ming |
---|---|
論文名稱: |
利用奈米柱陣列之米氏散射效應觀察活體細胞牽引力 Quantification of cellular traction forces in-vitro by Mie scattering effect from nano-pillars array |
指導教授: |
曾繁根
Tseng, Fan Gang |
口試委員: |
李國賓
Lee, Gwo Bin 陳啟昌 Chen, Chii Chang |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 80 |
中文關鍵詞: | PS球自組裝 、奈米柱陣列 、細胞力學 、細胞牽引力 |
外文關鍵詞: | Langmuir-blodgett, Cell traction force, silicon nanoarray |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
當細胞內部之細胞骨架去貼附細胞外基質時,細胞會產生強烈收縮力去攀爬基材表面,使細胞延展開來並且進行分化的作用,而細胞外基質的結構強度會影響細胞的生理狀況及生物力學特性。當細胞生長時細胞外基質必須有合適的環境來提供良好之生長條件,否則即使細胞與植入表面達到接觸,但是細胞卻無法在基材表面拓展開來,與基材表面產生牢固的貼附效果,在這種細胞骨架結構行為失敗的情況下,細胞可能會邁向凋亡的路徑發展。不同的細胞在同一外基質上展現的細胞力學情況不盡相同,故研究細胞力學可助於利用物理性質探討細胞的動態行為,相當複雜且重要。
本研究在矽基材表面鋪上單層PS球陣列,再透過濕蝕刻製出矽奈米柱陣列,大面積規則排列的垂直柱狀結構可用來偵測細胞爬行的牽引力(Cell traction force),於奈米柱尖端鍍上金屬薄膜,在暗場環境下可標定柱子位置,藉由柱子頂端的偏移量,可推算回去得知細胞牽引力的大小。過去文獻對於細胞力學的探討多是蒐集數個細胞的分析數據後以統計方式歸納結論,在本研究我們嘗試長時間觀察單一細胞對矽奈米柱的拉伸狀況,並探討細胞各部位的牽引力大小和細胞運動行為的關係。
[1]M. Alexe, C. Harnagea, and D. Hesse, "Non-conventional micro- and nanopatterning techniques for electroceramics," Journal of Electroceramics, vol. 12, pp. 69-88, Jan-Mar 2004.
[2]Matthew E. Stewart et al. “Nanostructured Plasmonic Sensors,” Chem. Rev. 2008, 108, 494-521.
[3]J. I. Martin, J. Nogues, K. Liu, J. L. Vicent, and I. K. Schuller, "Ordered magnetic nanostructures: fabrication and properties," Journal of Magnetism and Magnetic Materials, vol. 256, pp. 449-501, Jan 2003.
[4]Richard L. McCreery, “Raman Spectroscopy for chemical analysis”, New york : Wiley Interscience, (2000).
[5]S. Y. Chou, P. R. Krauss, and P. J. Renstrom, "Nanoimprint lithography," The Journal of Vacuum Science and Technology B vol. 14 pp. 4129-4133, 1996.
[6]X. Zhang, A. V. Whitney, J. Zhao, E. M. Hicks, and R. P. Van Duyne, "Advances in contemporary nanosphere lithographic techniques," Journal of Nanoscience and Nanotecnology, vol. 6, pp. 1920-1934, 2006.
[7]S. M. Yang, S. G. Jang, D. G. Choi, S. Kim, and H. K. Yu, "Nanomachining by colloidal lithography," Small, vol. 2, pp. 458-475, Apr 2006.
[8]Christy L. Haynes and Richard P. Van Duyne, “Nanosphere lithography: A versatile nanofabrication tool for studies of size-dependent nanoparticle optics,” J. Phys. Chem. B 2001, 105, 5599-5611.
[9]Bodo Fuhrmann, Hartmut S. Leipner,” Ordered arrays of silicon nanowiresproduced by nanosphere lithography and molecularbeam epitaxy,” nano letters, 2005, 5, 2524.
[10]Hye Jin Nam, Duk-Young Jung, “Close-packed hemispherical microlens array from two-dimensional ordered polymeric microspheres,” Langmuir 2006, 22, 7358-7363.
[11]K. Kempa, B. Kimball et al. “Photonic Crystals Based on Periodic Arrays of Aligned Carbon Nanotubes,” nano letters, 2003, 3, 13-18.
[12]A. Kosiorek, W. Kandulski et al. ” Shadow Nanosphere Lithography: Simulation and Experiment,” nano letters, 2004, 4, 1359-1363.
[13]N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura, and K. Nagayama, “Two-dimensional crystallization,” nature,361,1993.
[14]Antony S. Dimitrov and Kuniaki Nagayama, “Continuous Convective Assembling of Fine Particles into Two-Dimensional Arrays on Solid Surfaces,” Langmuir,12,1303,1996.
[15]P. Jiang, J. F. Bertone et al.” Single-Crystal Colloidal Multilayers of Controlled Thickness,” Chem. Mater., 11, 2132-2140,1999.
[16]Brian G. Prevo and Orlin D. Velev, “Controlled, Rapid Deposition of Structured Coatings from Micro- and Nanoparticle Suspensions,” Langmuir 2004, 20, 2099-2107.
[17]E. Sheppard, N. Tcheurekdjian, J. Colloid Interface Sci. 28 (1968) 481
[18]R. Aveyard, J.H. Clint, D. Nees, N. Quirke, Langmuir 16 (2000) 8820–8828.
[19]Shemaiah M. Weekes,* Feodor Y. Ogrin, William A. Murray, and Paul S. Keatley,” Macroscopic Arrays of Magnetic Nanostructures from Self-Assembled Nanosphere Templates,” Langmuir 2007, 23, 1057-1060
[20]Evgeny Sirotkin,* Julius D. Apweiler, and Feodor Y. Ogrin, " Macroscopic Ordering of Polystyrene Carboxylate-Modified Nanospheres Self-Assembled at the Water-Air Interface," Langmuir 2010, 26(13), 10677–10683.
[21]Ashkin, A. Science 1980, 210, 1081-1088.
[22]Hammer, D. A.; Lauffenburger, D. A. Biophys. J. 1987, 52, 475-487
[23]Hammer, D. A.; Lauffenburger, D. A. Biophys. J. 1987, 52, 475-487Martin, G.; Andreas, R.; Martin, S.; Jürgen Rühe.; Johannsmann, D. Surf. Interface Anal. 1999, 27, 572
[24]Wang; Ingber. Science 1993, 260, 1124-1127.
[25]Harris, A. K.; Wild, P.; Stopak, D. Science 1980, 208, 177-179
[26]Burton, K.; Taylor, D. L. Nature 1997, 385, 450-454
[27]Lee, J.; Leonard, M.; Oliver, T.; Ishihara, A.; Jacobson, K. J. Cell Biol. 1994, 127,1957-1964
[28]Galbraith, C. G.; Sheetz, M. P. Proc. Natl. Acad. Sci. USA 1997, 94, 9114-9118
[29]Sarunas, P.; Julie, G.; Bengt K. J. Micromech. Microeng. 2003, 13, 900-913
[30]Tan, J. L.; Joe, T.; Dana, M. P.; Darren, S. G.; Kiran, B.; Christopher, S. C. Proc. Natl. Acad. Sci. 2003, 100, 1484-9.
[31]Zhou Li, Jinhui Song, Giulia Mantini, Ming-Yen Lu, Hao Fang, Christian Falconi, Lih-Juann Chen, and Zhong Lin Wang,” Quantifying the Traction Force of a Single Cell by Aligned Silicon NanowireArray,” Nano letter, 2009
[32]Chiung-Wen Kuo et al.” Polymeric nanopillar arrays for cell traction force measurements,” Electrophoresis 2010, 31, 3152–3158
[33]Geoffrey, M. C. The Cell: A Molecular Approach, ASM Press, Harvard Medical School 1997, pp. 1-673.
[34]KSV Instruments software manual.(LB device)