簡易檢索 / 詳目顯示

研究生: 黃承浩
Huang, Chen-How.
論文名稱: SU(N)對稱破壞之量子淬火在SU(N)費米氣體中所導致的預熱現象以及自旋翻轉碰撞
Pre-thermalization and spin-changing collisions after ramping up the strength of a SU(N)-symmetry breaking interaction in an SU(N) Fermi Gas
指導教授: 米格爾
Cazalilla, Miguel -A.
口試委員: 王道維
Wang, Daw-Wei
陳柏中
Chen, Po-Chung
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 33
中文關鍵詞: 量子淬火預熱化自旋翻轉SU(N)費米系統
外文關鍵詞: quantum quench, pre-thermalization, spin-flips, SU(N) Fermi system
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們研究了SU(N)對稱破壞的量子淬火在SU(N)費米氣體中所導致的預熱(pre-thermalization)以及自旋翻轉轉碰撞。我們分析了對於不同的起始自旋極化狀態的影響並發現對自旋翻轉會壓抑預熱的產生。我們還研究了淬火時間的影響,對於較長的淬火時間系統會傾向於其平衡態的行為。


    We explore the short-time evolution of an SU(N) Fermi-liquid following the quench of a SU(N)-symmetry interaction.
    The conditions for the existence of a pre-thermalized regime
    after turning on the interaction strength are analyzed.
    We find that spin-changing collisions play an important role in suppressing pre-thermalization for spin-polarized initial states. For an unpolarized (i.e. SU$(N)$ symmetric) initial ground state, a pre-thermalized regime is observed, which is
    robust to presence of (SU$(N)$-symmetric) interactions in the initial state. We also study the short-time dynamics
    for finite-time ramps of the interaction strength.
    For long ramp-time, the value of the discontinuity approaches the equilibrium value of the post-quench Hamiltonian.

    1 Introduction............................ 1 2 Theory............................ 3 3 Conditions for pre-thermalization............................ 4 3.1 Effect of spin-flips............................ 4 3.2 splitting in kinetic energy ....................... 6 3.3 change in spin population ....................... 7 4 Pre-thermalized regime............................ 8 4.1 Momentum distribution dynamics................... 9 4.2 Energy response............................. 12 5 Conclusions............................ 14 A effect of interaction range 15 B derivation of observables 16 B.1 Keldysh Formalism and non-equilibrium Feynman rule at T=0 . . . 16 B.2 derivation of momentum distribution ................. 17 B.3 bare kinetic energy ........................... 21 B.4 derivation of bare interaction energy ................. 21 B.5 bare total energy ............................ 23 C renormalization of contact interaction............................ 24

    [1] A.A. Abrikosov, L.P. Gorkov, and I.E. Dzyaloshinski. Methods of Quantum Field Theory in Statistical Physics. Dover Books on Physics Series. Dover Publications, 1975.
    [2] Ian Affleck and J. Brad Marston. Large-n limit of the heisenberg-hubbard model: Implications for high-Tc superconductors. Phys. Rev. B, 37:3774– 3777, Mar 1988.
    [3] D. Banerjee, M. Bo ̈gli, M. Dalmonte, E. Rico, P. Stebler, U.-J. Wiese, and P. Zoller. Atomic quantum simulation of U(n) and SU(n) non-abelian lattice gauge theories. Phys. Rev. Lett., 110:125303, Mar 2013.
    30
    [4] S. Blatt, T. L. Nicholson, B. J. Bloom, J. R. Williams, J. W. Thomsen, P. S. Julienne, and J. Ye. Measurement of optical feshbach resonances in an ideal gas. Phys. Rev. Lett., 107:073202, Aug 2011.
    [5] Michael Buchhold, Markus Heyl, and Sebastian Diehl. Prethermalization and thermalization of a quenched interacting luttinger liquid. Phys. Rev. A, 94:013601, Jul 2016.
    [6] G. Cappellini, M. Mancini, G. Pagano, P. Lombardi, L. Livi, M. Siciliani de Cumis, P. Cancio, M. Pizzocaro, D. Calonico, F. Levi, C. Sias, J. Catani, M. Inguscio, and L. Fallani. Direct observation of coherent interorbital spin- exchange dynamics. Phys. Rev. Lett., 113:120402, Sep 2014.
    [7] M. A. Cazalilla. Effect of suddenly turning on interactions in the luttinger model. Phys. Rev. Lett., 97:156403, Oct 2006.
    [8] M A Cazalilla, A F Ho, and M Ueda. Ultracold gases of ytterbium: ferromag- netism and mott states in an su(6) fermi system. New Journal of Physics, 11(10):103033, 2009.
    [9] Miguel A Cazalilla and Ana Maria Rey. Ultracold fermi gases with emergent su( n ) symmetry. Reports on Progress in Physics, 77(12):124401, 2014.
    [10] R. Ciury lo, E. Tiesinga, and P. S. Julienne. Optical tuning of the scattering length of cold alkaline-earth-metal atoms. Phys. Rev. A, 71:030701, Mar 2005.
    [11] Martin Eckstein, Marcus Kollar, and Philipp Werner. Thermalization after an interaction quench in the hubbard model. Phys. Rev. Lett., 103:056403, Jul 2009.
    [12] K. Enomoto, K. Kasa, M. Kitagawa, and Y. Takahashi. Optical feshbach resonance using the intercombination transition. Phys. Rev. Lett., 101:203201, Nov 2008.
    [13] A. V. Gorshkov, M. Hermele, V. Gurarie, C. Xu, P. S. Julienne, J. Ye, P. Zoller, E. Demler, M. D. Lukin, and A. M. Rey. Two-orbital su(n) mag- netism with ultracold alkaline-earth atoms. Nat Phys, 6(4):289–295, 04 2010.
    31
    [14] Simone A. Hamerla and Go ̈tz S. Uhrig. Interaction quenches in the two- dimensional fermionic hubbard model. Phys. Rev. B, 89:104301, Mar 2014.
    [15] M. H ̈ofer, L. Riegger, F. Scazza, C. Hofrichter, D. R. Fernandes, M. M. Parish, J. Levinsen, I. Bloch, and S. Fo ̈lling. Observation of an orbital interaction- induced feshbach resonance in 173Yb. Phys. Rev. Lett., 115:265302, Dec 2015.
    [16] L. V. Keldysh. Diagram technique for nonequilibrium processes. Zh. Eksp. Teor. Fiz., 47:1515–1527, 1964. [Sov. Phys. JETP20,1018(1965)].
    [17] J. Brad Marston and Ian Affleck. Large-n limit of the hubbard-heisenberg model. Phys. Rev. B, 39:11538–11558, Jun 1989.
    [18] Aditi Mitra. Correlation functions in the prethermalized regime after a quan- tum quench of a spin chain. Phys. Rev. B, 87:205109, May 2013.
    [19] Michael Moeckel and Stefan Kehrein. Interaction quench in the hubbard model. Phys. Rev. Lett., 100:175702, May 2008.
    [20] Michael Moeckel and Stefan Kehrein. Real-time evolution for weak interaction quenches in quantum systems. Annals of Physics, 324(10):2146 – 2178, 2009.
    [21] Michael Moeckel and Stefan Kehrein. Crossover from adiabatic to sudden interaction quenches in the hubbard model: prethermalization and non- equilibrium dynamics. New Journal of Physics, 12(5):055016, 2010.
    [22] N. Nessi, A. Iucci, and M. A. Cazalilla. Quantum quench and prethermaliza- tion dynamics in a two-dimensional fermi gas with long-range interactions. Phys. Rev. Lett., 113:210402, Nov 2014.
    [23] G. Pagano, M. Mancini, G. Cappellini, L. Livi, C. Sias, J. Catani, M. Inguscio, and L. Fallani. Strongly interacting gas of two-electron fermions at an orbital feshbach resonance. Phys. Rev. Lett., 115:265301, Dec 2015.
    [24] R.K. Pathria and P.D. Beale. Statistical Mechanics. Elsevier Science, 1996.
    [25] Anatoli Polkovnikov, Krishnendu Sengupta, Alessandro Silva, and Mukund
    Vengalattore. Colloquium. Rev. Mod. Phys., 83:863–883, Aug 2011.
    32
    [26] N. Read and D. Newns. Adv. Phys., 36(799), 1987.
    [27] N Read and D M Newns. A new functional integral formalism for the degener- ate anderson model. Journal of Physics C: Solid State Physics, 16(29):L1055, 1983.
    [28] N. Read and S. Sachdev. Nucl. Phys. B, 316(609), 1989.
    [29] F. Scazza, C. Hofrichter, M. Hofer, P. C. De Groot, I. Bloch, and S. Folling. Observation of two-orbital spin-exchange interactions with ultracold su(n)- symmetric fermions. Nat Phys, 10(10):779–784, 10 2014.
    [30] Rekishu Yamazaki, Shintaro Taie, Seiji Sugawa, and Yoshiro Takahashi. Sub- micron spatial modulation of an interatomic interaction in a bose-einstein condensate. Phys. Rev. Lett., 105:050405, Jul 2010.
    [31] Mi Yan, B. J. DeSalvo, B. Ramachandhran, H. Pu, and T. C. Killian. Control- ling condensate collapse and expansion with an optical feshbach resonance. Phys. Rev. Lett., 110:123201, Mar 2013.
    [32] S.-K. Yip and Tin-Lun Ho. Zero sound modes of dilute fermi gases with arbitrary spin. Phys. Rev. A, 59:4653–4656, Jun 1999.
    [33] X. Zhang, M. Bishof, S. L. Bromley, C. V. Kraus, M. S. Safronova, P. Zoller, A. M. Rey, and J. Ye. Spectroscopic observation of su(n)-symmetric interac- tions in sr orbital magnetism. Science, 345(6203):1467–1473, 2014.

    QR CODE