簡易檢索 / 詳目顯示

研究生: 柯忠祁
Ko Chung-Chi
論文名稱: 梳狀與星狀高分子錯合體自身聚集行為與奈米結構之研究
A Complexation Route Toward Controlled Chain Architecture: Supramolecular Star-like and Comb-like Polymer Complexes
指導教授: 陳信龍教授
Dr. Hsin-Lung Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2000
畢業學年度: 88
語文別: 中文
論文頁數: 135
中文關鍵詞: 梳狀高分子錯合物星狀高分子錯合物
外文關鍵詞: comb-like polymer complex, star-like polymer complex
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • (一) Comb-like Polymer Complex
    PEO / Dodecylbenzenesulfonic Acid( DBSA ) 錯合物

    利用PEO與界面活性劑DBSA之間的鍵結形成錯合物,使PEO主鏈連結上烷鏈分子,在藉由自我聚集的行為形成似梳狀( comb-like )的分子組態。Fourier transform infrared spectrometry( FTIR )的實驗結果,證實兩者間具有氫鍵作用力。另外,在偏光顯微鏡( POM )下,PEO(DBSA)x具有雙折射的介相( mesophase )特性,加上小角度X光散射( SAXS )、廣角度X光散射( WAXS )的圖譜顯示,PEO(DBSA)x具有微相分離( microphase separation )之層狀結構,證實PEO(DBSA)x具有似梳狀( comb-like)的組態。

    經由SAXS、熱差式掃描分析儀( DSC ) 、POM等實驗的分析與PEO(DBSA)x的結構式預測,可以證實PEO被分散在DBSA 層狀結構的極性層間,且為一高度延伸的狀態,即DBSA的存在,將使得PEO具有奈米級的分散。

    確定PEO(DBSA)x的結構後,針對錯合物的結晶行為、介相消失溫度、介相形成速度等特性加以探討。DBSA的加入使得PEO主鏈受到相當的束縛,對其結晶性質產生相當大的影響,由實驗結果顯示,只有在低組成的DBSA含量時,才可發現PEO的結晶,但其結晶度將較純PEO下降許多。

    測定PEO(DBSA)x的相圖顯示,其介相消失溫度比純DBSA高,顯示PEO的加入有助於介相結構的穩定 ,且發現錯合物mesophase形成速度較純DBSA快得許多,配合SAXS 熔融態的實驗,可證實是因為熔融態中PEO-DBSA氫鍵的作用力導致兩者間在熔融態時已具有局部的規則性或濃度擾動( concentration fluctuation ),進而造成錯合物mesophase的形成速度較純DBSA快。

    (二) Star-like Polymer Complex

    Amino-terminated Poly(ethylene oxide)( PEO-NH2 ) /4-sulfonic calix[n]arene ( SCA-n ) Complex

    在本研究中,針對星狀高分子的結構,我們提出一種全新的製備方法:以末端具有-NH2官能基之PEO( PEO-NH2 )為手臂分子,和環狀具-SO3H基團的4-sulfonic calix[n]arene( SCA-n,其中n表示SCA具有之SO3H基團的數目 )為核產生錯合,以生成星狀分子架構。利用SCA-n上-SO3H基團產生質子化( protonation )成為-SO3-,使得H+ 離子跑到-NH2基團上成為-NH3+,進而在兩者間產生離子作用力以形成star complex。在這次的研究系統中,我們分別使用具有8和4個-SO3H基團的SCA為核,使其產生8根與4根手臂數目的star complexes,分別命名為star 1和star 3並進一步探討手臂數目對星狀高分子性質的影響。

    藉由滴定實驗和model compound的FTIR圖譜,結果顯示-SO3-和NH3+ 間確實產生離子作用力。並比較純SCA-8、star 1、star 3、PEO-OH( 末端具有-OH官能基之PEO ) + SCA-8、PEO-OH + SCA-4和純PEO-NH2、PEO-OH於氯仿和甲苯的溶解度,結果顯示只有star complexes與純PEO-NH2、PEO-OH可溶於氯仿及甲苯中,故證實PEO-NH2和SCA-n鍵結在一起,導致star 1和star 3可溶於氯仿與甲苯。此外,從OM的結果顯示,熔融態的star 1、star 3為均勻態的單一相,而PEO-OH/SCA-8和PEO-OH/SCA-4具有巨觀的相分離現象,這也證明PEO-NH2與SCA-n之間確實因發生鍵結而改變了相容性。為了更精確的證實SO3-和NH3+間作用力足以形成星狀高分子,分別針對手臂分子、star 1、star 3以及同分子量的線性高分子進行intrinsic viscosity([h])的量測,比較star polymer與手臂分子的[h]證實PEO-NH2與SCA-n能形成star structure。另外由星狀高分子與手臂分子在水中,具有相似的[h],證實在甲苯中星狀高分子與手臂分子明顯差異的[h]是因為SCA-n與PEO-NH2發生離子鍵結所導致,而此離子作用力在極性溶液中則會發生解離,使得PEO-NH2與SCA-n間無法形成星狀高分子,僅為單純的混合狀態。

    熔融態( 約65℃ )的PEO與star complexes的SAXS圖形顯示,star complexes 呈現一個SAXS peak,此散射峰是由於熔融態中核與PEO matrix之間的電子密度差所致,因此,由qmax的位置可求出核與核之間的距離為7.3 nm。最後,比較star complexes與線性高分子的結晶行為,由WAXS的結果發現SCA-n的存在,不會影響PEO的晶體結構,但是star complexes中PEO的球晶成長速率大幅地下降,且與star complexes手臂的數目有關。


    Abstract
    This thesis contains investigated the microstructure of comb-like and star-like polymer complexes. The comb-like complexes were created through complexation of poly(ethylene oxide) (PEO) and dodecylbenzenesulfonic acid (DBSA). Hydrogen-bonding interaction between PEO and DBSA was observed from the result of fourier transform infrared spectrometry (FTIR), the birefringence pattern viewed under polarized optical microscopy (POM) showed that PEO(DBSA)x complexes exhibited mesomorphic phases. Small angle X-ray scatting (SAXS) and wide angle X-ray diffraction (WAXD) revealed the microphase separated lamellar structure in the complexes, where the POM chains were inserted into the DBSA layers and were highly-stretched. Since the PEO chains were confined in the DBSA lamella, the crystallization of PEO was completely prohibited except for very degree of complexation (x=0.1). The mesophase isotropization temperatures of the complexes were higher than that of DBSA. In other words, complexes with PEO had improved the stability of mesophase. The rate of mesophase formation in the complexes was much faster than that of pure DBSA. This was attributed to the presence of local concentration fluctuation in the melt of the complexes.

    The second part of the thesis investigated the star-like polymer complexes. We report the creation of star-like chain architecture through complexation of a mono-amino terminated poly(ethylene oxide) (PEO-NH2) with a macrocyclic compound, 4-sulfonic calix[n]arene(n=4 and 8) (SCA-n). The complexes were prepared in aqueous solution to render proton transfer from the sulfonic acid groups in SCA-n to the amino groups in PEO-NH2, and thereby generated 4- and 8-arm star-like complexes with the PEO arms attached to the SCA-n cores via ionic bonding. Formation of the star-like complexes was verified by titration, solubility test, and dilute solution viscometry. The intrinsic viscosities ([h]) of the complexes in toluene were 60% higher than that of neat PEO-NH2, showing that the star structure retained in nonpolar solvents. On the other hand, PEO arms dissociated from the cores in water, so that the complexes and neat PEO-NH2 displayed similar [h]. The star-like complexes showed a SAXS peak associated with the core-core correlation in the melt with the inter-core distance of 7.3 nm. The concentration fluctuation in the melt was completely destroyed upon the crystallization of PEO arms. In the semicrystalline state, the SCA-n cores were excluded from the crystal lattice and resided in the interlamellar amorphous regions. Measurements of the crystal thickness by SAXS indicated that the crystals were once- and twice-folded in neat PEO-NH2 and the complexes crystallized at 40℃ respectively. The growth rate of the star-like complexes was slower than that of pure PEO, and the effect magnified as the number of arms increased.

    目 錄 一、研究動機 1 二、摘要 (一) Comb-like Polymer Complex 2 (二) Star-like Polymer Complex 3 第 一 章 一、文獻回顧 1-1.前言 5 1-2. 高分子分子鏈的架構 6 1-3. 非共價鍵之自我聚集 8 1-4. 高分子與界面活性劑錯合體之超分子形態 14 1-5. 高分子-界面活性劑錯合體介相形成的條件 16 1-6. 特殊作用力的分類 22 二、實驗部分 2-1. 材料 26 2-2. 錯合體製備:熔融混合法 27 2-3. 實驗儀器與方法 27 1.POM 27 2.DSC 28 3.SAXS 28 4.WAXS 31 5.FTIR 31 6.TGA 31 三、結果與討論 3-1. PEO(DBSA)x錯合物刑態的研究 32 3-2. SAXS分析 40 3-3. PEO(DBSA)x作用力分析 50 3-4. 結晶行為的研究 56 3-5. 錯合物相圖的研究 58 3-6. 吸水速度與吸水能力的研究 60 3-7. mesophase 形成速度 64 四、結論 68 五、參考文獻 第 二 章 一、文獻回顧 1-1.前言 70 1-2.星狀高分子 75 1-3.星狀高分子的架構 77 1-4.星狀高分子的判定 86 1.GPC 86 2.dilute solution viscosity 87 3.<Rg2> vs. [h] 89 4.星狀高分子的結晶行為 92 二、實驗部分 2-1. 實驗系統 94 2-2. 錯合物製備 96 2-3. 實驗儀器 97 1.OM 97 2.FTIR 97 3.DSC 98 4.黏度計 98 5.WAXS 99 6.SAXS 100 三、結果與討論 3-1. 星狀結構的分析 101 3-2. bulk微結構的分析 118 3-2-1. 熔融態 118 3-2-2. 結晶態 122 3-3. 結晶行為的探討 129 四、結論 134 五、考文獻 圖 目 錄 第 一 章 圖1-1.高分子鏈架構的分類 7 圖1-2. 共價鍵鍵結之液晶基高分子 9 圖1-3. 利用官能基化產生非共價鍵鍵結使高分子與液晶基團產生聚集 9 圖1-4. 利用非共價鍵結的diblock copolymer 11 圖1-5. 利用非共價鍵結的network polymer 11 圖1-6. 利氫鍵結合單體形成高分子主鏈 11 圖1-7. 高分子-界面活性劑錯合物之形態 13 圖1-8. 高分子-界面活性劑自我聚集的機構 15 圖1-9. 當鍵結數目很少時,高分子-界面活性劑形成蜷曲的形態 19 圖1-10. 當鍵結數目足夠時,高分子-界面活性劑形成棒狀的形態 19 圖1-11-1. 利用氫鍵鍵結之錯合物 23 圖1-11-2. 利用雙氫鍵鍵結之錯合物 23 圖1-12. 離子鍵結之錯合系統 25 圖1-13. 配位鍵結之錯合物 25 圖2-1. 探討微結構之相關儀器偵測範圍比較圖 29 圖3-1. 不同組成在30℃下POM所觀測到之mesophase 33 圖3-2-1. 室溫下PEO(DBSA)0.8之WAXS圖 34 圖3-2-2. 室溫下PEO(DBSA)0.3之WAXS圖 36 圖3-2-3. 室溫下PEO(DBSA)0.1之WAXS圖 36 圖3-3. 由WAXS分析所得之PEO(DBSA)x錯合物對結構大小的關係圖 38 圖3-4. Schematic structure of P4VP(PDP)x:(a)x =0.25; (b)x=1.0 41 圖3-5. 室溫下PEO(DBSA)x錯合物之SAXS圖 42 圖3-6. PEO(DBSA)x錯合物長週期值對組成的關係圖 44 圖3-7. 奈米複合材料中高分子的分散方式 47 圖3-8. 各組成錯合物散射峰之半高寬值 48 圖 3-9. DBSA、PEO(DBSA)0.9、PEO(DBSA)0.2之一維相關函數分析圖 49 圖3-10-1. 不同組成之錯合物與DBSA在波數FTIR 光譜圖 51 圖3-10-2.錯合物與DBSA在波數1000㎝-1 ~ 1300㎝-1的FTIR光譜圖 52 圖3-9. PEO/DBSA錯合物之化學式 53 圖3-10. 純PEO、DBSA與PEO/DBSA = 0.8、0.2、0.1之DSC圖 54 圖3-11. PEO(DBSA)x錯合物之化學式 55 圖3-12. 純PEO、DBSA與PEO(DBSA)x = 0.8、0.2、0.1之DSC圖 57 圖3-13. PEO、DBSA、PEO(DBSA)x之相圖 59 圖3-14-1. DBSA重量對時間的變化 61 圖3-14-2. PEO(DBSA)0.4 重量對時間的變化 61 圖3-14-3. PEO(DBSA)0.9 重量對時間的變化 61 圖3-15. DBSA和錯合物之TGA圖 63 圖3-16. 熔融態( 75℃)下PEO(DBSA)x錯合物之SAXS圖 67 第 二 章 圖 1-1. graft-like complex 72 圖 1-2. polymer-surfactant complex 72 圖 1-3. block-like complex 72 圖1-4-1. 相同類型與長度手臂的星狀高分子 78 圖1-4-2. 相同類型不同長度手臂之星狀高分子 78 圖1-5. 團聯式星狀高分子 80 圖1-6. miktoarm star polymer 80 圖1-7. heteroarm amphiphilic star polymer製備法 83 圖1-8. core-functionalized amphiphilic star polymer 之製備法 84 圖1-9. core-functionalized amphiphilic star polymer 85 圖1-10. nanosphere 85 圖3-1-1. Star 1 之錯合機制 102 圖3-1-2. Star 3 之錯合機制 103 圖3-2. 比較純PEO-NH2、SCA-8以及model star complex之FTIR結果 105 圖3-3. PEO-OH + SCA-8、PEO-OH + SCA-4、star在80℃的形態 107 圖 3-4-1. PEO(40k)、star 1以及PEO(5K)在甲苯中[h]的比較圖 111 圖 3-4-2. PEO(20K)、star 3以及PEO(5K)在甲苯中[h]的比較圖 112 圖 3-5. starPEO(5K)和以C-4-arm星狀高分子在水中[h]的比較圖 114 圖 3-6. star 1、star 3、手臂PEO在熔融態下之SAXS圖 119 圖 3-7. PEO與SCA-n在熔融態的示意圖 119 圖 3-8. star 1與star 3之Porod-Ruland equation 分析 120 圖 3-9. star 1、star 3和PEO在室溫下之WAXS圖 123 圖 3-10. star 1、star 3、手臂PEO在40℃結晶之SAXS圖 125 圖3-11. star 1與PEO-NH2 熔點的比較圖 130 圖3-12-1. star 1、star 3和純PEO-NH2在43.3℃球晶大小對時間圖 132 圖3-12-2. PEO-OH + calix(8)、Star在39℃球晶大小對時間作圖 132 圖3-13. 結晶溫度對球晶成長速度的比較圖 133 表 目 錄 第 一 章 表3-1.不同組成錯合物WAXS的結果 39 表 3-2.不同組成之錯合物其結構之長週期值 45 表3-3.比較DBSA與不同組成之錯合物SO3H之FTIR吸收峰的位置 54 表3-4.mesophase開始消失溫度(Ti)與完全消失溫度(Td) 59 第 二 章 表 1-1.不同分枝結構之g值 91 表 3-1.PEO star complex以及PEO-OH + SCA-n對不同溶劑的溶解度 109 表 3-2. star complexes g、g`與e值的比較 117 表 3-3. star complexes和PEO 40℃ 之Tm、DH、fc、L、lc、la值 127 表3-4. star 1、star 3和純PEO-NH2 在不同溫度之球晶成長速度 133

    PEO(DBSA)x
    1. Ikkala, O.; Ruokolainen, J.; ten Brinke, G.; Torkkeli, M.; Serimaa, R. Macromolecules, 1995, 28, 7088.
    2. Ruokolainen, J.; Tanner, J.; ten Brinke, G.; Ikkala, O.; Torkkeli, M.; Serimaa, R. Macromolecules, 1995, 28, 7779.
    3. Ruokolainen, J.; ten Brinke, G.; Ikkala, O.; Torkkeli, M.; Serimaa, R. Macromolecules, 1996, 29, 3409.
    4. Ruokolainen, J.; Torkkeli, M.; Serimaa, R.; Vahvaselka, S.; Saariaho, M.; ten Brinke,G.; Ikkala,O. Macromolecules, 1996, 29, 6621.
    5. Ruokolainen, J.; Torkkeli, M.; Serimaa, R.; Komanschek, E.; ten Brinke, G.; Ikkala, O. Macromolecules, 1997, 30, 2002.
    6. Ruokolainen, J.; Makinen, M.; Torkkeli, M.; Makela, R.; Serimaa, R. ten Brinke, G.; Ikkala, O. Science, 1998, 280, 557.
    7. Ruokolainen, J.; Tanner, J.; Ikkala, O.; ten Brinke, G.; Thomas, E. L. Macromolecules, 1998, 31, 3532.
    8. Luyten, M. C.; Alberda van Ekenstein, G. O. R.; ten Brinke, G.; Ruokolainen, J.; Ikkala, O. Torkkeli, M.; Serimaa, R. Macromolecules, 1999, 32, 4404.
    9. Kato, T.; Ihata, O.; Ujiie, S.; Tokita, M.; Watanabe, J. Macromolecules, 1998, 31, 3551.
    10. Kosaka, Y.; Kato, T.; Uryu, T. Macromolecules, 1995, 28, 7005.
    11. Kato, T.; Kihara, H.; Ujiie, S.; Uryu, T.; Frechet, J. M. J. Macromolecules, 1996, 29, 8734.
    12. Kato, T.; Kihara, H.; Uryu, T.; Fujishima, A.; Frechet, J. M. J. Macromolecules, 1992, 25, 6836.
    13. Ponomarenko, E. A.; Waddon, A. J.; Bakeev, K. N.; Tirrell, D. A.; MacKnight, W. J. Macromolecules, 1996, 29, 4340.
    14. Ponomarenko, E. A.; Tirrel, D. A.; MacKnight, W. J. Macromolecules, 1996, 29, 8751.
    15. Antonietti, M.; Gonrad, J.;Thunemann, A.; Macromolecules, 1994, 27, 6007.
    16. Antonietti, M.; Forster, S.; Zisenis, M.; Conrad, J. Macromolecules, 1995, 28, 2270.
    17. Antonietti, M.; Maskos, M. Macromolecules, 1996, 29, 4199.
    18. Antonietti, M.; Wenzel, A.; Thunemann, A. Langmuir, 1996, 12, 2111.
    19. Fredrickson, G. H. Macromolecules, 1993, 26, 2825.
    20. Ober, C. K.; Wegner, G. Advanced Material, 1997, 9, 17.
    21. Tanaka, F. Macromolecules, 1998,31, 384.
    22. Antonietti, M.; Burger, C.; Effing, J. Advanced Materials, 1995, 7, 751.
    23. Yeh, F.; Eugene, L.; Walter, T.; Chu, B. Langmuir, 1998, 14, 4350.
    24. Mironov, A. V.; Starodoubtsev, S. G.; Khokhlov, A. R.; Dembo, A. T. Macromolecules, 1998, 31, 7698.
    25. Kawakami, T.; Kato, T. Macromolecules, 1998, 31, 4475.
    26. Ruokolainen,J.; ten Brinke,G.; Ikkala,O. Advanced Materials, 1999, 11, 777.
    27. Russell, T. P.; Jerome, R.; Charlier, P.; Foucart, M. Macromolecules, 1998, 21, 1709.
    28. Meijer et al., Science, 1997, 278, 1601.
    29. Semenov. A. N. Lecture Notes, Utrecht, 1993.
    30. Sakurai, S. Elsevier Science, 1995, 3, 90.
    31. Sakamoto, M.; Hashimoto, T. Macromolecules, 1998, 31, 8493.
    32. Antonietti, M.; Burger, C.; Micha, M. A.; Weissenberger, M. Macromol. Chem. Phys. 1999, 200, 150.
    33. Chen, H. L.; Hsiao, M. S. Macromolecules, 1998, 31, 6579.
    34. Ruland, W. J. J. Appl. Crystallogr, 1971, 4, 70.
    35. Porod, G. Koll. Z. 1951, 124, 83.
    36. Porod, G. Koll. Z. 1952, 125, 51.
    37. Porod, G. Koll. Z. 1952, 125, 108.
    38. Bates, F. S.; Fredrickson, G.H. Annu.Rev.Phys.Chem., 1990, 41, 525.
    39. Giannelis, E. P. Advanced Materials, 1996, 1, 29.
    40. Dai, J.; Goh, S. H.; Lee, S. Y.; Siow, K. S. Polymer Journal, 1994, 26, 905.
    41. Luo, X.; Goh, S. H.; Lee, S.Y. Macromolecules, 1997, 30, 4934.
    42. Huang, X. D.; Goh, S. H.; Zhao, Z. D.; Wong, M. W.; Huan, C. H. Macromolecules, 1999, 32, 4327.
    43. Tadokoro, H. Structure of Crystalline Polymers, 1979.
    Star Polymer 參考文獻
    1. Tsuchida, E.; Abe, K. Adv. Polym. Sci,, 1982 45,1.
    2. Liu, S.; Zhang, G.; Jiang, M.; polymer, 1999, 40,5449.
    3. Weiss, R. A.; Sasongko, S.; Jerome, R. Macromolecules, 1991, 24, 2271.
    4. Bazuin, C. G.; Plante, M.; Varshney, S. K. Macromolecules, 1997, 30, 2618.
    5. Chen, H. L.; Hsiao, M. S. Macromolecules, 1998, 31, 6579.
    6. Ruokolainen, J.; ten Brinke, G.; Ikkala, O.; Torkkeli, M.; Serimaa, R. Macromolecules, 1996, 29, 3409.
    7. Ruokolainen, J.; Tanner, J.; ten Brinke, G.; Ikkala, O.;Torkkeli, M.; Serimaa, R. Macromolecules, 1995, 28, 7779.
    8. Russell, T. P.; Jerome, R.; Charlier, P.; Foucart, M. Macromolecules, 1988, 21, 1709.
    9. Iwasaki, K.; Hirao, A.; Nakahama, S. Macromolecules, 1993, 26, 2126.
    10. Haraguchi, M.; Inomata, K.; Nose, T. Polymer, 1996, 37, 3611.
    11. Haraguchi, M.; Inomata, K.; Nose, T. Polymer, 1996, 37, 4223.
    12. Inomata, K.; Liu, L. Z.; Nose, T.; Chu, B. Macromolecules, 1999, 32, 1554.
    13. Huang, X. D.; Goh, S. H.; Lee, S. Y.; Zhao, Z. D.; Wong, M. W.; Huan, C. H. Macromolecules, 1999, 32, 4327.
    14. Dai, J.; Goh, S. H.; Lee, S. Y.; Siow, K. S. Polym. J., 1994, 26, 905.
    15. Rodel, M. J. J. Am. Chem. Soc. 1953, 75, 6110.
    16. Billmeyer, F. W. J. Am. Chem. Soc. 1953, 75, 6118.
    17. Beasley, J. K. J. Am. Chem. Soc. 1953, 75, 6123.
    18. Fetters, L. J.; Lohse, D. J.; Richter, D.; Witten, T. A.; Zirkel, A. Macromolecules 1994, 27, 4639.
    19. Hadjichristidis, N.; Xenidou, M.; Iatrou, H.; Pitsikalis, M.; Poulos, Y.; Avgeropoulos, A.; Sioula, S.; Paraskeva, S.; Velis, G.; Lohse, D. J.; Schulz, D. N.; Fetters, L.J.; Wright, P. J.; Mendelson, R. A.; Garcia-Franco, C. A.; Sun, T., Ruff, C. J. Macromolecules 2000, 33, 2424.
    20. Mendelson, R. A.; Bowles, W. A.; Finger, F. L. J. Polym. Sci.,Part A-2 1970, 8, 105.
    21. Karol, F. J. Macromol. Symp. 1995, 8-9, 563.
    22. Tombakoglu, M.; Akcasu, A. Z. Macromolecules, 1997, 30, 7596.
    23. Kasko, A. M.; Heintz, A. M.; Pugh, C. Macromolecules, 1998, 31, 256.
    24. Goldacker, T.; Abetz, V. Macromolecules, 1999, 32, 5165.
    25. Allgaier, J.; Martin, K.; Rader, K. M.; Mullen, K. Macromolecules, 1999, 32, 3190.
    26. Matyiaszewski, K.; Mikker, P. J.; Pyun, J.; Kickelbick, G.; Diamanti, S. Macromolecules, 1999, 32, 6526.
    27. Roovers, J. Macromolecules, 1994, 27, 5359.
    28. Gorda, K. R.; Peiffer, D. G. Journal of Applied Polymer Science, 1993, 50, 1977.
    29. Kanaoka, S.; Omura, T.; Sawamoto, M.; Higashimura, T. Macromolecules, 1992, 25, 6407.
    30. Kanaoka, S.; Sawamoto, M.; Higashimura, T. Macromolecules, 1992, 25, 6414.
    31. Kanaoka, S.; Sawamoto, M.; Higashimura, T. Macromolecules, 1993, 26, 254.
    32. Dickstein, W. H.; Lillya, C. P. Macromolecules, 1989, 22, 3886.
    33. Jacob, S.; Majoros, I.; Kennedy, J. P. Macromolecules, 1996, 29, 8631.
    34. Merkle, G.; Burchard, W. Macromolecules, 1996, 29,5734.
    35. Xia, J.; Zhang, X.; Matyjaszewski, K. Macromolecules, 1999, 32, 4482.
    36. Wang, F.; Wilson, M. S.; Rauh, R. D.; Schottland, P.; Reynolds, R. Macromolecules, 1999, 32, 4272.
    37. Hadjichristidis, N. Journal of Polymer Science: Part A, 1999, 37, 857.
    38. Hadjichristidis, N.; Iatrou, H.; Behal, S. K.; Chludzinski, J. J.; Disko, M. M.; Garner, R. T.; Liang, K. S.; Lohse, D. J.; Milner, S. T. Macromolecules, 1993,26, 5812.
    39. Iatrou, H.; Hadjichristidis, N. Macromolecules, 1992, 25, 4649.
    40. Pemmisi, R. W.; Fetters, L. J. Macromolecules, 1988, 21, 1094.
    41. Mays, J. W. Polym. Bull., 1990, 23, 247.
    42. Tsitsilianis, C.; Ghaumont, Ph.; Rempp, P. Makromol. Chem. 1990, 191, 2319.
    43. Guo, A.; Liu, G.; Tao, J. Macromolecules, 1996, 29, 2487.
    44. Russell, T. P.; Fetters, L. J.; Clark, J. C.; Bauer, B. J.
    Han, C. C. Macromolecules, 1990, 23, 654.
    45. Kraus, G.; Stacy, C. J. J. Polymer Sci.: Symposium, 1973, 43, 329.
    46. Ambler, R. M.; Mate, R. D.; Purdon, J. R.; JR. Journal of Polymer Science: Polymer Chemistry Edition, 1974, 12, 1759.
    47. Zimm, B. H.; Stockmayer, W. H. J. Chem. Phys., 1949, 17, 1301.
    48. Stockmayer, W. H.; Fixman, M. Ann. N. Y. Acad. Sci., 1953, 57, 334.
    49. Zimm, B. H.; Kilb, R. W. Journal of Polymer Science, 1959, 37, 19.
    50. Okumoto, M.; Tasaka, Y.; Nakamura, Y.; Norisuye, T. Macromolecules, 1999, 32, 7430.
    51. Hadjichristidis, N.; Roover, J. E. Journal of Polymer Science :Polymer Physics Edition, 1974, 12, 2521.
    52. Roovers, J. E.; Bywater, S. Macromolecules, 1974, 7, 443.
    53. Zilliox, J. G. Makromol. Chem., 1972, 156, 121.
    54. Osaki, K.; Schrag, J. L., J. Polym. Sci., Polym. Phys. Sect., 1973, 11, 549.
    55. Chen, E. Q.; Lee, S. W.; Zhang, A.; Moon, B. S.; Mann, I.; Harris, F. W.; Cheng, S. Z. D.; Hsiao, B. S.; Yeh, F.; Merrewell, E.; Grubb, D. T. Macromolecules, 1999, 32, 4784.
    56. Risch,B.G.; Wilkes,G.L.; Warakomski,M. Polymer, 1993, 34, 2330.
    57. Liu,Y.; Pan,C. Journal of Polymer Science :Part A :Polymer Chemistry, 1997, 35, 3403.
    58. Lee, S. W.; Chen, E.; Zhang, A.; Yoon, Y.; Moon, B. S.; Lee, S.; Harris, F. W.; Cheng, S. Z. D.; Meerwall, E. D. v.; Hsiao, B. S.; Verma, R.; Lando, J. B. Macromolecules, 1996, 29, 8816.
    59. Ikkala,O.; Ruokolainen,J.; ten Brinke,G.; Torkkeli,M.; Serimaa, R. Macromolecules, 1995, 28, 7088.
    60. Thurmond, C. D.; Zimm, B. H., J. Polymer Sci., 1952, 8, 477.
    61. Ruland, W. J. J. Appl. Crystallogr, 1971, 4, 70.
    62. Porod, G. Koll. Z. 1951, 124, 83.
    63. Porod, G. Koll. Z. 1952, 125, 51.
    64. Porod, G. Koll. Z. 1952, 125, 108.
    65. Namba, M.; Sugawara, M.; Buhlmann, P.; Umezawa, Y. Langmuir, 1995, 11, 635.
    66. Wunderlich, B. Macro. Physics ; Academic Press : New York, 1980, 3.
    67. Chang, S. Z. D.; Wunderlich, B. J. Polym. Sci.: Part B Polymer Physics, 1986, 24, 577.
    68. Hoffman, J. D. Polymer, 1982, 23, 656.
    69. Hoffman, J. D.; Guttman, C. M.; DiMarzio, E. A. Disc. Faraday Soc. 1979, 68, 177.
    70. Fetters, L. J.; Kiss, A. D.; Pearson, D. S.; Quack, G. F.; Vitus, F. J. Macromolecules, 1993, 26, 647.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE