簡易檢索 / 詳目顯示

研究生: 陳仕勛
Shih-Hsun Chen
論文名稱: 針對摺積混合的加速聯合近似對角化盲訊號分離方法
A Speed-up Joint Approximate Diagonalize Method for Convolutive Mixed Blind Source Separation
指導教授: 王小川
Hsiao-Chuan Wang
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 47
中文關鍵詞: 盲訊號分離獨立成份分析聯合對角化
外文關鍵詞: blind source separation, independent component analysis, joint diagolization
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要探討摺積混合的盲訊號分離演算法,希望能解決實際環境下,語音訊號處理中所描述的雞尾酒會問題。論文採用的基本盲訊號分離演算法為聯合近似對角化演算法,應用此方法解決盲訊號分離問題時並不用對混合訊號做集中化和白色化的前處理,能避免訊號因前處理而造成統計特性的改變,因而有不錯的分離效果。為了改進計算速度緩慢的缺點,首先利用人耳的聽覺特性,以巴克刻度為基準,對低頻部份以較密集的頻率間隔做盲訊號分離的演算,高頻部份頻率間隔則較稀疏,以符合人耳聽覺上對訊號低頻成份變動較敏感,高頻成份較不敏感的特性。結果顯示單純使用此方法可以讓演算時間縮減54%。接著利用聯合近似對角化演算法的特性,由每次迭代過程得到的矩陣去預估下一次迭代過程可能得到的矩陣,藉此加速演算法收斂,結果顯示使用此方法可以讓演算時間縮減42%。實際運算時先將訊號轉至頻域,接著計算訊號的交頻譜當成要聯合對角化的目標矩陣。利用改良的加速演算法對各別的離散頻率進行盲訊號分離;在解決排列和膨脹問題後估得各離散頻率的解混合矩陣,並求得時域的分離訊號。實驗時嘗試將兩個麥克風在實際環境中錄到的雙人混合語音分離開,結果顯示可以減少71%的計算時間,並且訊號分離的成果也和加速前相差不遠。


    第一章 導論 1.1 研究動機 1.2 研究方法簡介 1.3 章節大綱 第二章 第一章 盲訊號分離與獨立成份分析介紹 2.1 盲訊號分離 2.2 獨立成份分析 第三章 獨立成份分析的不確定性問題與前置作業 3.1 不確定性(ambiguity)問題 3.2 前置處理 第四章 聯合對角化演算法 4.1 JADIAG演算法概述 4.2 聯合對角化2個2x2的矩陣 4.3 演算法流程整理 第五章 頻域獨立成份分析 5.1 摺積混合訊號的分離 5.2 不確定性問題的影響 第六章 排列與膨脹問題的解決 6.1 排列問題的解決 6.2 膨脹問題的解決 第七章 加速運算的方法 7.1 計算頻域成份 7.2 計算交頻譜(cross spectrum) 7.3 利用巴克刻度(Bark-scale)進行加速 7.4 進行加速的JADIAG盲訊號分離演算法 7.5 解決排列與膨脹問題 7.6 將訊號轉回時域 第八章 實驗結果 8.1 實驗環境 8.2 效能評比 8.3 實驗結果 8.4 實驗結果討論 8.5 分離訊號波形及頻譜 第九章 結論 第十章 參考文獻

    [1] A. Hyv□rinen. “Fast and robust fixed-point algorithms for independent component analysis.” IEEE Transactions on Neural Networks, Vol:10(3), Page:626-634, 1999
    [2] Chong-Yung Chi, Chih-Chun Feng, Chii-Horng Chen, and Ching-Yung Chen. “Blind equalization and system identification – batch processing algorithms, performance and applications.” Chapter 5, 2006, Springer
    [3] Te-Won Lee and Gil-Jin Jang. “The statistical structures of male and female speech signals.” 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2001 (ICASSP'01), May 5-11, Salt Lake City, UT, USA. Vol:1, Page:105-108
    [4] J.F. Cardoso and A. Souloumiac, “Blind beamforming for non Gaussian signals.” IEE Proceedings-F, Vol:140, Page:362-370, 1993.
    [5]A. J. Bell and T. J. Sejnowski. “An information-maximization approach to blind separation and blind deconvolution.” Neural Computation, Vol:7, Page:1129-1159, 1995
    [6] L. Tong, V. C. Soon, Y. F. Huang, and R. Liu. “AMUSE: a new blind identification algorithm.” IEEE International Symposium on Circuits and Systems, 1990, New Orleans, LA, USA., May 1-3, 1990. Vol.3, Page:1784-1787
    [7] Mori Y., Takatani T., Saruwatari H., Hiekata T., and Morita T. “Blind source separation combining SIMO-ICA and SIMO-model-based vinary masking.” 2006 IEEE International Conference on Acoustics, Speech and Signal Processing, 2006. Vol:5, Page:V-V
    [8] Pau Bofill and Enric Monte. “Underdetermined convoluted source reconstruction using LP and SOCP, and a neural approximator of the optimizer.” 6th International Conference on Independent Component Analysis and Blind Source Separation (ICA 2006), Page:569-576.
    [9] Matthias Baeck and Udo Z□lzer. “Real-time implementation of a source separation algorithm.” Proceedings of the 6th International Conference on Digital Audio Effects (DAFx-03), London, UK, September 8-11, 2003
    [10] Noboru Murata, Shiro ikeda, and Andreas Ziehe. “An approach to blind source separation based on temporal structure of speech signals.” Proceedings of 1998 International Conference on Artificial Neural Networks (ICANN' 98), Skovde, Sepetember 1998.
    [11] D.T. Pham, Ch. Servi□re, and H. Boumaraf. “Blind separation of convolutive audio mixtures using nonstationarity.” 4th International Symposium on Independent Component Analysis and Blind Signal Separation (ICA 2003), Nara, Japan, April 1-4, 2003. Page:975-980
    [12] Sawada Hiroshi, Araki Shoko, Mukai Ryo, and Makino Shoji. “Blind separation and localization of speeches in a meeting situation.” 40th Asilomar Conference on Signals, Systems and Computers, 2006. ACSSC' 06, Page:1407-1411
    [13] K. Matsuoka. “Minimal distortion principle for blind source separation.” Proceedings of the 41st SICE Annual Conference, August 5-7, 2002. Vol:4, Page:2138-2143
    [14] D. T. Pham. “Joint approximate diagonalization of positive definite hermitian matrices.” SIAM Journal on Matrix Analysis and Applications, Vol:22, No:4, Page:1136-1152, 2000
    [15] Miyabe S., Takatani T., Mori Y., Saruwatari H., Shikano K., and Tatekura Y. “Double-talk free spoken dialogue interface comvining sound field control with semi-blind source separation.” 2006 IEEE International Conference on Acoustics, Speech and Signal Processing, 2006. Vol:1, Page:I-I
    [16] Nikolaos Mitianoudis and Tania Stathaki. “Underdetermined source separation using mixtures of warped Laplacians.” 7th International Conference on Independent Component Analysis and Signal Separation (ICA 2007), London, UK, September 9-12, 2007. Page:236-243
    [17] Stefan Winter, Hiroshi Sawada, Shoko Araki, and Shoji Makino. “Overcomplete BSS for convolutive mixtures based on hierarchical clustering.” Proceedings of the International Conference on Independent Component Analysis and Blind Signal Separation (ICA 2004), Granada, Spain, September 22-24, 2004
    [18] A. Hyv□rinen and E. Oja. “Independent component analysis: algorithms and applications.” Neural Networks, Vol:13, Page:411-430, 2000.
    [19] D. T. Pham., Garat, Ph., and Justten, C. “Separation of a mixture of independent sources through a maximum likelihood approach.” Proc. EUSIPCO'92, Brussels, August, 1992. Vol.2, Page:771-774
    [20] M. Kendall and A. Stuart. “The Advanced Theory of Statistics.” Charles Griffin & Company, 1958
    [21] Leonardo Tomazeli Duarte and Christian Jutten. “Blind source separation of a class of nonlinear mixtures.” 7th International Conference on Independent Component Analysis and Signal Separation (ICA 2007), London, UK, September 9-12, 2007. Page:41-48
    [22] A. Hyv□rinen. “Blind source separation by nonstationarity of variance: acumulant-based approach.” IEEE Transactions on Neural Networks, Vol:12, Issue: 6, Page: 1471-1474
    [23] A. Hyv□rinen and E. Oja. “A fast fixed-point algorithm for independent component analysis.” Neural Computation, Vol:9, Issue:7, Page:1483-1492, 1997
    [24] Seungjin Choi, Shun-ichi Amari, Andrzej Cichocki, and Ruey-wen Liu. “Natural gradient learning with a nonholonomic constraint for blind deconvolution of multiple channels.” Proceedings of the International Workshop on Independent Component Analysis and Blind Signal Separation (ICA'99), Aussois, France, January 11-15, 1999. Page:371-376,
    [25] Hao Shen and Knut H□per “Newton-like methods for parallel independent component analysis.” Proceedings of the 2006 16th IEEE Signal Processing Society Workshop on Machine Learning for Signal Processing, 2006.September 2006 Page:283-288
    [26]. A. Hyv□rinen. “Survey on Independent Component Analysis.” Neural Computing Surveys, Vol:2, Page:94-128, 1999.
    [27] Audrey Blin, Shoko Araki, and Shoji Makino. “Blind source separation when speech signals outnumber sensors using a Sparseness - Mixing Matrix Estimation (SMME).” International Workshop on Acoustic Echo and Noise Control (IWAENC 2003), Sepetember 2003, Kyoto, Japan. Page:211-214
    [28] Kamran Rahbar and James P. Reilly. “A frequency domain method for blind source separation of convolutive audio mixtures.” IEEE Transactions on Speech and Audio Processing, Sepetember 2005, Vol:13, No:5, Page:832-844.
    [29] Radoslaw Mazur and Alfred Mertins. “Solving the permutation problem in convolutive blind source separation.” 7th International Conference on Independent Component Analysis and Signal Separation (ICA 2007), London, UK, September 9-12, 2007. Page:512-519
    [30] Seungjin Choi, Andrzej Cichocki, and Shunichi Amari. “Flexible independent component analysis.” Proceedings of the 1998 IEEE Signal Processing Society Workshop in Neural Networks for Signal Processing VIII, Cambridge, UK, 1998. Page:83-92
    [31] Jean-Mare Valin, Jean Rouat, and Francois Michaud. “Enhanced robot audition based on microphone array source separation with post-fiter.” Proceedings of 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems, Sendai, Japan, 2004. Page:2124-2128

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE