研究生: |
蔡其融 Chi-Rung Tsai |
---|---|
論文名稱: |
基於可展開性曲面之幾何設計方法 Geometric Modeling of Developable Surfaces |
指導教授: |
瞿志行
Chih-Hsing Chu |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 工業工程與工程管理學系 Department of Industrial Engineering and Engineering Management |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 106 |
中文關鍵詞: | 可展開性曲面 、遺傳演算法 、Bézier曲面 、幾何模擬 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
可展開性曲面(Developable Surface)為一種特殊的規則曲面(Ruled Surface),可被還原成平面而不造成材料的扭曲或撕裂,此類曲面大量運用於電腦圖學以及CAD/CAM領域,例如衣服鞋類的造型、航太汽車零件設計,或是鈑金材料的彎曲變形等。本研究探討在各種不同目標函式最佳化的情況下,根據多片可展開性圓錐曲面內插空間中給定的兩條邊界曲線,藉以進行三維曲面之幾何設計。主要提出兩階段式創新性的演算法則,首先基於啟發式演算法根據三角與四角圓錐曲面自動排列成為Bézier複合曲面。接著根據目標函式,於局部區域先行決定較佳的曲面控制點,最後結合遺傳演算法(Genetic Algorithms)求得整體最佳化之曲面。與以往利用平面近似的方法相比較,不論是第一階段基於可展開性曲面局部最佳化或是經遺傳演算法產生的結果,其對應之目標函式值皆較佳。研究結果大幅改善電腦輔助幾何設計之可行性,進而提供三維造型的可製造性,亦可應用於三維形狀的電腦輔助物理模擬(Physical Modeling)。本研究成功地將提出之演算法則運用於實際的鞋類設計與製造,結果顯示其正確性與實用價值。
[1] M. Mortenson, (1985). Geometric Modeling, John Wiley & Sons.
[2] M.J. Mancewicz and W.H. Frey, (1992). “Developable Surfaces: Properties, Representations, and Methods of Design,” GM Research Publication, GMR-7637.
[3] J.S. Chalfant and T. Maekawa, (1998). “Design for Manufacturing Using B-Spline Developable Surfaces,” Journal of Ship Production, Vol. 42, No.3, pp.207-215.
[4] L.W. Ferris, (1968). “A Standard Series of Developable Surfaces,” Marine Technology, Vol.5, pp. 53-62.
[5] H. Pottmann, T. Randrup, J. Wallner, H.-Y. Chen, I.-K. Lee, and S. Leopoldseder (1999). “On Surface Approximation Using Developable Surfaces,” Graphical Models and Image Processing, 61, pp. 110-124.
[6] J. Hoschek and M. Schneider, (1997). “Interpolation and Approximation with Developable Surfaces,” Curves and Surfaces with Applications in CAGD, pp. 185–202. Vanderbilt University Press.
[7] T. Randrup, (1998). “Approximation of Surfaces by Cylinders,” Computer-Aided Design, Vol. 30, No. 10, pp. 807-812.
[8] A. Kouibia and M. Pasadas (2002). “Approximation of Fairness Bicubic Splines,” Advances in Computational Mathematics, 20, pp. 87-103.
[9] G. Aumann, (1991). “Interpolation with Developable Bézier Patches,” Computer Aided Geometric Design, Vol. 8, pp. 409-420.
[10] G. Aumann, (2004). “A Simple Algorithm for Designing Developable Bézier Surface,” Computer Aided Geometric Design, Vol. 20, pp. 601-616.
[11] G. Aumann, (2004). “Degree Elevation and Developable Bézier Surfaces,” Computer Aided Geometric Design, Vol. 21, pp. 661-670.
[12] C.H. Chu and C.H. Séquin, (2002). “Developable Bezier Patches: Properties and Design”, Computer-Aided Design, Vol. 34, pp. 511-527.
[13] C.H. Chu and J.T. Chen, (2004). “Geometric Design of Developable B-Spline Patches,” The 20st National Conference on Mechanical Engineering, The Chinese Society of Mechanical Engineers, Taipei, Taiwan, 2003.
[14] C.H. Chu and J.T. Chen, (2004). “Geometric Design of UNIFORM Developable B-Spline Surfaces,” ASME 30th Design Automation Conference DETC2004-57257, Salt Lake City, Utah, USA.
[15] C.H. Chu and J.T. Chen, (2004). “Geometric Design of Developable Composite Bézier Surfaces,” Computer Aided Design and Applications, Vol. 1, No. 3, pp. 531-540.
[16] C.H. Chu and J.T. Chen, (2005). “Developable Bézier Surface Design with Continuities,” Journal of Computers, to appear.
[17] C.H. Chu and J.T. Chen, (2006). “Characterizing Design Degrees of Freedom for Composite Developable Bézier Surfaces and Their Applications in Design and Manufacturing,” to appear, Robotics & CIM.
[18] C.H. Chu and J.T. Chen, (2005). “Five-Axis Flank Machining of Ruled Surfaces with Developable Surface Approximation,” CAD & Graphics 2005, pp. 238-243, Hong Kong.
[19] C.H. Chu and J.T. Chen, (2006). “Automatic Tool Path Generation for 5-axis Flank Milling based on Developable Surface Approximation,” to appear, International Journal of Advanced Manufacturing Technology.
[20] R.R. Mercer, G.M. McCauley, and S. Anjilvel, (1990). “Approximation of Surfaces in Quantitative 3-D Reconstructions,” IEEE Transaction on Biomedical Engineering, Vol. 37, No. 12, pp. 1136-1146.
[21] M.L. Viaud and H. Yahia, (1992). “Facial Animation with Wrinkles,” Proceedings of the Eurographics Workshop on Animation and Simulation ’92, pp. 1–13.
[22] J. Vince, (2000). Essential Computer Animation Fast, Springer, New York.
[23] P. Volino and N.M. Thalmann, (1999). “Fast Geometric Wrinkles on Animated Surfaces,” Proceedings WSCG ’99.
[24] K. Tang and C.C.L. Wang, (2005). “Modeling Developable Folds on A Strip,” Journal of Computing and Information Science in Engineering, Vol. 5, No. 1, pp.35-47.
[25] K. Tang and C.C.L. Wang, (2005). “Optimal Boundary Triangulations of An Interpolating Ruled Surface,” Journal of Computing and Information Science in Engineering, Vol. 5, pp. 291-301.
[26] C. Li, S. Mann, and S. Bedi, (2005). “Error Measurements for Flank Milling,” Computer-Aided Design 37(14), pp. 1459-1468.
[27] H.P. Moreton and C.H. Séquin, (1992). “Functional Optimization for Fair Surface Design,” SIGGRAPH 92 Proceedings, pp. 167-176.
[28] N. M. Patrikalakis and T. Maekawa, (2001). Shape Interrogation for Computer Aided Design and Manufacturin, Springer.
[29] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein, (2001). Introduction to Algorithms(2nded.), MIT Press.
[30] R.H. Mohring, H. Schilling, B. Schutz, D Wagner, and T. Willhalm, (2005). “Partitioning Graphs to Speed Up Dijkstra's Algorithm,” Experimental and Efficient Algorithms 3503,pp. 189-202.
[31] E. Belogay, C. Cabrelli, U. Molter, and R. Shonkwiler, (1997). “Calculating The Hausdorff Distance Between Curves,” Information Processing Letters, v. 64, pp. 17-22.
[32] G. Morin and R. Goldman, (2001). “On The Smooth Convergence of Subdivision and Degree Elevation for Bezier Curves,” Computer Aided Geometric Design 18(7), pp. 657-666.
[33] S. Kolmanič and N. Guid, (2003). “A New Approach in CAD System for Designing Shoes,” Journal of Computing and Information Technology, Vol. 11, pp. 319-326.
[34] http://www.spatial.com/
[35] http://www.rhino3d.com/
[36] http://www.catia.ibm.com/