研究生: |
藍霈萱 Lan, Pei-Shiuang |
---|---|
論文名稱: |
液靜壓內藏式主軸之熱源探討與溫升影響分析 Heat Source and Influence for hydrostatic built-in spindle |
指導教授: |
林士傑
Lin, Shih-Chieh |
口試委員: |
宋震國
Sung, Cheng-Kuo 黃華志 Huang, Hua-Chih |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2020 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 78 |
中文關鍵詞: | 內藏式馬達 、液靜壓軸承 、主軸熱源 |
外文關鍵詞: | built-in motor, hydrostatic bearing, heat source of spindle |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究將針對配置液靜壓軸承的內藏式主軸進行不同溫度下性能模擬與實驗測試。液靜壓軸承相較於傳統接觸式滾動軸承,液體潤滑軸承能克服其阻尼特性較差等問題;內藏式馬達裝配精巧,同軸傳動可更精確控制轉速,兩者之搭配將提高加工水準。
然而液靜壓軸承內部液壓油流經管路與油腔時產生之摩擦功率,與內藏式馬達運轉時產生之散失熱等熱量會直接對主軸造成影響,其溫升不只影響到金屬材質變形,同時也改變軸承內液壓油之黏滯係數數值。從理論上,可得知軸承內油膜變化會影響軸承性能,而熱量則會使主軸產生結構變形。因此透過進行液靜壓內藏式主軸之熱源探討,並搭配實驗驗證相關性能與熱變形,可進一步預測實際狀況之熱量產生,以期能更有效掌控主軸於不同溫度下的性能表現。
Compared with traditional contact bearing, hydrostatic bearing can advance the damping performance and processing stiffness. The precision will also be improved when the hydrostatic bearing is equipped with built-in motor which can control the rotating speed more precisely.
However, the heat power, including friction power produced when the oil flow through the tubes and recesses and motor dissipated heat etc., will affect the performance of spindle directly. The change of temperature not only causes material deformation but also transforms the viscosity coefficient of oil. In theory, the viscosity of coefficient of oil will influences the performance of hydrostatic built-in spindle. Therefore, in the research, it is expected that the calculation of heat source of hydrostatic built-in spindle and validation of experiments could further forecast the heat production, which will be in charge of the performance of the spindle under different temperatures.
[1] Bernd Bossmanns and Jay F. Tu, “A thermal model for high speed motorized spindles,” International Journal of Machine Tools and Manufacture, pp.1345-1366, 1999.
[2] Chi-Wei Lin, Jay F. Tu and Joe Kamman, “An integrated thermo-mechanical-dynamic model to characterize motorized machine tool spindles during very high speed rotation,” International Journal of Machine Tools and Manufacture, pp.1035-1050, 2003.
[3] Rowe and W. Brian, “Hydrostatic, aerostatic, and hybrid bearing design”, Elsevier, 2012.
[4] O'donoghue, J. P. rowe and W. B., “Hydrostatic journal bearing (exact procedure)”, Tribology, 1968, 1.4: 230-236.
[5] Ghosh, M. K.; Majumdar and B. C., “Design of multi-recess hydrostatic oil journal bearings”, Tribology International, 13.2: 73-78, 1980.
[6] Bernd Bossmanns and Jay F. Tu, “A thermal model for high speed motorized spindles”, International Journal of Machine Tools & Manufacture, pp.1345–1366, 1999.
[7] Stanley I. Pinel, Hans R. Signer, Erwin V. Zaretsky, “Designa and Operating Characteristics of High-Speed, Small-Bore, Angular-Contact Ball Bearing”, National Aeronautics and Space Administration, 1998.
[8] A. Zahedi, M.R. Movahhedy, “Thermo-mechanical modeling of high speed spindles”, Scientia Iranica, Transactions B: Mechanical Engineering, pp.282–293, 2012.
[9] Yen-Hsiu Huang, Chi-Wen Huang, Yang-Deng Chou, Chih-Cherng Ho and Ming-Tsang Lee, “An Experimental and Numerical Study of the Thermal Issues of a High-speed Built-in Motor Spindle,” Smart Science, 2016.
[10] Hao Su, Lihua Lu, Yingchun Liang, Qiang Zhang and
Yazhou Sun, “Thermal analysis of the hydrostatic spindle system by the finite volume element method”, Manufacture Technology, pp.1949–1959, 2014.
[11] W. Brian Rowe DSc and FIMechE, “Hydrostatic, aerostatic, and hybrid bearing design”, pp.49-51, 2012.
[12] Merle C. Potter and Elaine P. Scott,“Thermal Sciences: An Introduction to Thermodynamics, Fluid Mechanics, and Heat Transfer”, pp.505-507, 2004.
[13] Merle C. Potter and Elaine P. Scott,“Thermal Sciences: An Introduction to Thermodynamics, Fluid Mechanics, and Heat Transfer”, pp.516-518, 2004.
[14] Nikos J. Mourtos, “Fluid Properties –Viscosity”,2003.
[15] A. Muszynska, “Whirl and whip-rotor/bearing stability problems”, Journal of Sound and Vibration, pp.443-462, 1986.
[16] Helio Fiori de Castroa, Katia Lucchesi Cavalca, Rainer Nordmann, “Whirl and whip instabilities in rotor-bearing system consideringa nonlinear force model”, Journal of Sound and Vibration 317, pp.273–293, 2008.
[17] Jiu-Hong Jia and Tian-Qi Hang, “Vibration characteristics analysis of the rub-impact rotor system with mass unbalance”, Mathematical and Computational Applications, Vol. 18, No. 2, pp. 71-83, 2013.
[18] B. X. Tchomeni, A. A. Alugongo and L. M. Masu, “A fault analysis cracked-rotor-to-stator rub and unbalance by vibration analysis technique”, International Journal of Mechanical and Mechatronics Engineering Vol:9, No:11, pp.1883-1892, 2015.
[19] Bassani, Roberto, Piccigallo and Bruno, “Hydrostatic lubrication”, Elsevier, 1992.
[20] 張濬顯。液靜壓內藏式主軸設計與測試。國立清華大學動力機械研究所,新竹。2018。
[21] 劉育瑋。孔口節流器補償之液靜壓內藏式主軸設計改進與測試。國立清華大學動力機械研究所,新竹。2018。
[22] 林銘震。液靜壓旋轉工作平台設計與測試。國立清華大學動力機械研究所,新竹。2016。