簡易檢索 / 詳目顯示

研究生: 陳冠銘
Chen, Kuan-Ming
論文名稱: 在可重構智慧表面輔助毫米波 MIMO-OFDM 系統下基於深度展開設計混合式波束成形
Deep Unfolded Hybrid Beamforming in Reconfigurable Intelligent Surface Aided mmWave MIMO-OFDM Systems
指導教授: 鍾偉和
Chung, Wei-Ho
口試委員: 張佑榕
Chang, Ronald-Y
劉光浩
Liu, Kuang-Hao
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 41
中文關鍵詞: 毫米波通訊MIMO-OFDM可重構智慧表面混合式波束成形深度展開
外文關鍵詞: mmWave communication, MIMO-OFDM, reconfigurable intelligent surface, hybrid beamforming, deep unfolding
相關次數: 點閱:67下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在可重構智慧表面(RIS) 輔助的毫米波(mmWave) 多輸入多輸出(MIMO)
    正交頻率分割多工(OFDM) 收發機系統下,目標是共同設計收發器混合
    波束成形(Hybrid beamforming) 和RIS 的相位偏移(Phase shift) 來最大化頻
    譜效率(Spectral efficiency)。我們採用混合波束成形中部分連接(Partiallyconnected)
    結構,雖然會犧牲一些性能,但能夠有效地降低硬體成本是較具
    有經濟效益的架構。我們將加權最小均方誤差流形優化(WMMSE-MO) 算
    法應用到RIS 輔助系統上,由於WMMSE-MO 算法需要經過多次迭代才會
    收斂到不錯的性能上,這是造成其運算複雜度較高的原因,因此,我們進
    一步利用神經網路對WMMSE-MO 算法進行深度展開(Deep unfolding),以
    減少算法的計算複雜度並加速其收斂。最後,我們會改變不同內外層迭代
    次數以及系統設定參數,並與不同的算法做比較,而從模擬結果來看,所
    提出的深度展開WMMSE-MO 算法相較於沒有深度展開的對應算法與不同
    的算法,能達到更優異的頻譜效率表現、收斂速度和計算效率。


    In a millimeter-wave (mmWave) multiple-input multiple-output (MIMO) orthogonal
    frequency-division multiplexing (OFDM) transceiver system assisted by
    a reconfigurable intelligent surface (RIS).The goal is to jointly design transceiver
    hybrid beamforming and RIS phase shifts to maximize spectral efficiency (SE). By
    utilizing a partially connected structure in the hybrid beamforming, though sacrificing
    some performance, it effectively reduces hardware costs. We employ the
    weighted minimum mean square error manifold optimization (WMMSE-MO) algorithm
    for the RIS-assisted system. However, the WMMSE-MO algorithm requires
    multiple iterations to achieve satisfactory performance, leading to high computational
    complexity. In order to mitigate this, we further utilize neural networks
    to perform deep unfolding on the WMMSE-MO algorithm. This approach significantly
    reduces computational complexity and accelerates convergence. Additionally,
    we adjust the number of iterations for both the inner and outer layers, along
    with system configuration parameters. These adjustments are made while comparing
    other algorithms. Simulation results demonstrate that the proposed deepunfolded
    WMMSE-MO algorithm outperforms counterparts without deep unfolding
    and other algorithms. It achieves superior SE performance, convergence speed,
    and computational efficiency.

    摘要i Abstract ii 誌謝iii contents v List of Figures vii List of Tables viii 1 Introduction 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Literature Review and Related Works . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 Technical Background 6 2.1 MIMO System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2 Hybrid Beamforming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.3 Reconfigurable Intelligent Surface . . . . . . . . . . . . . . . . . . . . . . . . 8 2.4 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.5 Deep Unfolding Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3 Jointly Design Hybrid Beamforming and RIS Optimization Method 15 3.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2 mmWave Channel Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.4 The Proposed Hybird Beamforming Design for RIS-aided MIMO-OFDM Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4 Simulations Results and Discussion 26 4.1 Simulation Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.2 Simulation Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.3 Performance of the Propsed Method and Compared Algorithm . . . . . . . . . 27 4.3.1 Discussion of Algorithm Converge . . . . . . . . . . . . . . . . . . . 27 4.3.2 Performance of Different Inner Iteration with NRF r = 4 . . . . . . . . . 29 4.3.3 Performance of Different Inner Iteration with NRF r = 2 . . . . . . . . . 31 v 4.3.4 Performance of Different Numbers of Data Streams . . . . . . . . . . . 33 4.4 Execution Time Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 5 Conclusion and Future Work 35 References 37 vi

    [1] Z. Pi and F. Khan, “An introduction to millimeter-wave mobile broadband systems,” IEEE
    Commun. Mag., vol. 49, no. 6, pp. 101–107, 2011.
    [2] S. A. Busari, K. M. S. Huq, S. Mumtaz, L. Dai, and J. Rodriguez, “Millimeter-wave massive
    MIMO communication for future wireless systems: A survey,” IEEE Commun. Surveys
    Tuts., vol. 20, no. 2, pp. 836–869, 2018.
    [3] X. Wang, L. Kong, F. Kong, F. Qiu, M. Xia, S. Arnon, and G. Chen, “Millimeter wave
    communication: A comprehensive survey,” IEEE Commun. Surveys Tuts., vol. 20, no. 3,
    pp. 1616–1653, 2018.
    [4] I. Ahmed, H. Khammari, A. Shahid, A. Musa, K. S. Kim, E. De Poorter, and I. Moerman,
    “A survey on hybrid beamforming techniques in 5G: Architecture and system model
    perspectives,” IEEE Commun. Surveys Tuts., vol. 20, no. 4, pp. 3060–3097, 2018.
    [5] B. Yang, Z. Yu, J. Lan, R. Zhang, J. Zhou, and W. Hong, “Digital beamforming-based massive
    MIMO transceiver for 5G millimeter-Wave communications,” IEEE Transactions on
    Microw. Theory Techn., vol. 66, no. 7, pp. 3403–3418, 2018.
    [6] C. Han, L. Yan, and J. Yuan, “Hybrid beamforming for terahertz wireless communications:
    Challenges, architectures, and open problems,” IEEE Wireless Commun., vol. 28, no. 4,
    pp. 198–204, 2021.
    [7] Q. Wu, S. Zhang, B. Zheng, C. You, and R. Zhang, “Intelligent reflecting surface-aided
    wireless communications: A tutorial,” IEEE Trans. Commun., vol. 69, no. 5, pp. 3313–
    3351, 2021.
    37
    [8] Q. Wu and R. Zhang, “Towards smart and reconfigurable environment: Intelligent reflecting
    surface aided wireless network,” IEEE Commun. Mag., vol. 58, no. 1, pp. 106–112,
    2020.
    [9] Y. Liu, X. Liu, X. Mu, T. Hou, J. Xu, M. Di Renzo, and N. Al-Dhahir, “Reconfigurable
    intelligent surfaces: Principles and opportunities,” IEEE Commun. Surveys Tuts., vol. 23,
    no. 3, pp. 1546–1577, 2021.
    [10] A. Almohamad, A. M. Tahir, A. Al-Kababji, H. M. Furqan, T. Khattab, M. O. Hasna, and
    H. Arslan, “Smart and secure wireless communications via reflecting intelligent surfaces:
    A short survey,” IEEE Open J. Commun. Soc., vol. 1, pp. 1442–1456, 2020.
    [11] K. M. Faisal and W. Choi, “Machine learning approaches for reconfigurable intelligent
    surfaces: A survey,” IEEE Access, vol. 10, pp. 27 343–27 367, 2022.
    [12] B. Ozpoyraz, A. T. Dogukan, Y. Gevez, U. Altun, and E. Basar, “Deep learning-aided 6G
    wireless networks: A comprehensive survey of revolutionary PHY architectures,” IEEE
    Open J. Commun. Soc., vol. 3, pp. 1749–1809, 2022.
    [13] N. Samuel, T. Diskin, and A. Wiesel, “Learning to detect,” IEEE Trans. Signal Process.,
    vol. 67, no. 10, pp. 2554–2564, 2019.
    [14] M. S. Sim, Y.-G. Lim, S. H. Park, L. Dai, and C.-B. Chae, “Deep learning-based mmWave
    beam selection for 5G NR/6G with sub-6 GHz channel information: Algorithms and prototype
    validation,” IEEE Access, vol. 8, pp. 51 634–51 646, 2020.
    [15] C.-J. Chun, J.-M. Kang, and I.-M. Kim, “Deep learning-based channel estimation for massive
    MIMO systems,” IEEE Wireless Commun. Lett., vol. 8, no. 4, pp. 1228–1231, 2019.
    [16] W. Ma, C. Qi, Z. Zhang, and J. Cheng, “Sparse channel estimation and hybrid precoding
    using deep learning for millimeter wave massive MIMO,” IEEE Trans. Commun., vol. 68,
    no. 5, pp. 2838–2849, 2020.
    38
    [17] W. Shen, Z. Qin, and A. Nallanathan, “Deep learning enabled channel estimation for RISaided
    wireless systems,” in in Proc. IEEE Global Commun. Conf. (GLOBECOM), 2022,
    pp. 4226–4231.
    [18] A. Abdallah, A. Celik, M. M. Mansour, and A. M. Eltawil, “Deep-learning based channel
    estimation for RIS-aided mmWave systems with beam squint,” in in Proc. 2022 IEEE Int.
    Conf. Commun., 2022, pp. 1269–1275.
    [19] H. Huang, Y. Peng, J. Yang, W. Xia, and G. Gui, “Fast beamforming design via deep
    learning,” IEEE Trans. Veh. Technol., vol. 69, no. 1, pp. 1065–1069, 2020.
    [20] H. Huang, W. Xia, J. Xiong, J. Yang, G. Zheng, and X. Zhu, “Unsupervised learningbased
    fast beamforming design for downlink MIMO,” IEEE Access, vol. 7, pp. 7599–
    7605, 2019.
    [21] W. Xia, G. Zheng, Y. Zhu, J. Zhang, J. Wang, and A. P. Petropulu, “A deep learning
    framework for optimization of MISO downlink beamforming,” IEEE Trans. Commun.,
    vol. 68, no. 3, pp. 1866–1880, 2020.
    [22] K. Li, C. Huang, Y. Gong, and G. Chen, “Double deep learning for joint phase-shift and
    beamforming based on cascaded channels in RIS-assisted MIMO networks,” IEEE Wireless
    Commun. Lett., vol. 12, no. 4, pp. 659–663, 2023.
    [23] H. Song, M. Zhang, J. Gao, and C. Zhong, “Unsupervised learning-based joint active and
    passive beamforming design for reconfigurable intelligent surfaces aided wireless networks,”
    IEEE Commun. Lett., vol. 25, no. 3, pp. 892–896, 2021.
    [24] H. He, S. Jin, C.-K. Wen, F. Gao, G. Y. Li, and Z. Xu, “Model-driven deep learning for
    physical layer communications,” IEEE Wireless Commun., vol. 26, no. 5, pp. 77–83, 2019.
    [25] S. H. Hong, J. Park, S.-J. Kim, and J. Choi, “Hybrid beamforming for intelligent reflecting
    surface aided millimeter wave MIMO systems,” IEEE Trans. Wireless Commun., vol. 21,
    no. 9, pp. 7343–7357, 2022.
    39
    [26] K. Ying, Z. Gao, S. Lyu, Y. Wu, H. Wang, and M.-S. Alouini, “GMD-based hybrid
    beamforming for large reconfigurable intelligent surface assisted millimeter-wave massive
    MIMO,” IEEE Access, vol. 8, pp. 19 530–19 539, 2020.
    [27] K. Feng, X. Li, Y. Han, and Y. Chen, “Joint beamforming optimization for reconfigurable
    intelligent surface-enabled MISO-OFDM systems,” China Commun., vol. 18, no. 3, pp.
    63–79, 2021.
    [28] B. Sheen, J. Yang, X. Feng, and M. M. U. Chowdhury, “A deep learning based modeling
    of reconfigurable intelligent surface assisted wireless communications for phase shift
    configuration,” IEEE Open J. Commun. Soc., vol. 2, pp. 262–272, 2021.
    [29] J. Gao, C. Zhong, X. Chen, H. Lin, and Z. Zhang, “Unsupervised learning for passive
    beamforming,” IEEE Commun. Lett., vol. 24, no. 5, pp. 1052–1056, 2020.
    [30] H. Song, M. Zhang, J. Gao, and C. Zhong, “Unsupervised learning-based joint active and
    passive beamforming design for reconfigurable intelligent surfaces aided wireless networks,”
    IEEE Commun. Lett., vol. 25, no. 3, pp. 892–896, 2021.
    [31] A. Jagannath, J. Jagannath, and T. Melodia, “Redefining wireless communication for 6G:
    Signal processing meets deep learning with deep unfolding,” IEEE Trans. Artif. Intell.,
    vol. 2, no. 6, pp. 528–536, 2021.
    [32] Y. Liu, Q. Hu, Y. Cai, G. Yu, and G. Y. Li, “Deep-unfolding beamforming for intelligent
    reflecting surface assisted full-duplex systems,” IEEE Trans. Wireless Commun., vol. 21,
    no. 7, pp. 4784–4800, 2022.
    [33] J. He, H. Wymeersch, M. Di Renzo, and M. Juntti, “Learning to estimate RIS-aided
    mmWave channels,” IEEE Wireless Commun. Lett., vol. 11, no. 4, pp. 841–845, 2022.
    [34] X. Zhao, T. Lin, Y. Zhu, and J. Zhang, “Partially-connected hybrid beamforming for spectral
    efficiency maximization via a weighted MMSE equivalence,” IEEE Trans. Wireless
    Commun., vol. 20, no. 12, pp. 8218–8232, 2021.
    40
    [35] P. Wang, J. Fang, L. Dai, and H. Li, “Joint transceiver and large intelligent surface design
    for massive MIMO mmWave systems,” IEEE Trans. Wireless Commun., vol. 20, no. 2,
    pp. 1052–1064, 2021.
    [36] F. Sohrabi and W. Yu, “Hybrid digital and analog beamforming design for large-scale
    antenna arrays,” IEEE J. Sel. Topics Signal Process., vol. 10, no. 3, pp. 501–513, 2016.
    41

    QR CODE