研究生: |
陳冠銘 Chen, Kuan-Ming |
---|---|
論文名稱: |
在可重構智慧表面輔助毫米波 MIMO-OFDM 系統下基於深度展開設計混合式波束成形 Deep Unfolded Hybrid Beamforming in Reconfigurable Intelligent Surface Aided mmWave MIMO-OFDM Systems |
指導教授: |
鍾偉和
Chung, Wei-Ho |
口試委員: |
張佑榕
Chang, Ronald-Y 劉光浩 Liu, Kuang-Hao |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 通訊工程研究所 Communications Engineering |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 英文 |
論文頁數: | 41 |
中文關鍵詞: | 毫米波通訊 、MIMO-OFDM 、可重構智慧表面 、混合式波束成形 、深度展開 |
外文關鍵詞: | mmWave communication, MIMO-OFDM, reconfigurable intelligent surface, hybrid beamforming, deep unfolding |
相關次數: | 點閱:67 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在可重構智慧表面(RIS) 輔助的毫米波(mmWave) 多輸入多輸出(MIMO)
正交頻率分割多工(OFDM) 收發機系統下,目標是共同設計收發器混合
波束成形(Hybrid beamforming) 和RIS 的相位偏移(Phase shift) 來最大化頻
譜效率(Spectral efficiency)。我們採用混合波束成形中部分連接(Partiallyconnected)
結構,雖然會犧牲一些性能,但能夠有效地降低硬體成本是較具
有經濟效益的架構。我們將加權最小均方誤差流形優化(WMMSE-MO) 算
法應用到RIS 輔助系統上,由於WMMSE-MO 算法需要經過多次迭代才會
收斂到不錯的性能上,這是造成其運算複雜度較高的原因,因此,我們進
一步利用神經網路對WMMSE-MO 算法進行深度展開(Deep unfolding),以
減少算法的計算複雜度並加速其收斂。最後,我們會改變不同內外層迭代
次數以及系統設定參數,並與不同的算法做比較,而從模擬結果來看,所
提出的深度展開WMMSE-MO 算法相較於沒有深度展開的對應算法與不同
的算法,能達到更優異的頻譜效率表現、收斂速度和計算效率。
In a millimeter-wave (mmWave) multiple-input multiple-output (MIMO) orthogonal
frequency-division multiplexing (OFDM) transceiver system assisted by
a reconfigurable intelligent surface (RIS).The goal is to jointly design transceiver
hybrid beamforming and RIS phase shifts to maximize spectral efficiency (SE). By
utilizing a partially connected structure in the hybrid beamforming, though sacrificing
some performance, it effectively reduces hardware costs. We employ the
weighted minimum mean square error manifold optimization (WMMSE-MO) algorithm
for the RIS-assisted system. However, the WMMSE-MO algorithm requires
multiple iterations to achieve satisfactory performance, leading to high computational
complexity. In order to mitigate this, we further utilize neural networks
to perform deep unfolding on the WMMSE-MO algorithm. This approach significantly
reduces computational complexity and accelerates convergence. Additionally,
we adjust the number of iterations for both the inner and outer layers, along
with system configuration parameters. These adjustments are made while comparing
other algorithms. Simulation results demonstrate that the proposed deepunfolded
WMMSE-MO algorithm outperforms counterparts without deep unfolding
and other algorithms. It achieves superior SE performance, convergence speed,
and computational efficiency.
[1] Z. Pi and F. Khan, “An introduction to millimeter-wave mobile broadband systems,” IEEE
Commun. Mag., vol. 49, no. 6, pp. 101–107, 2011.
[2] S. A. Busari, K. M. S. Huq, S. Mumtaz, L. Dai, and J. Rodriguez, “Millimeter-wave massive
MIMO communication for future wireless systems: A survey,” IEEE Commun. Surveys
Tuts., vol. 20, no. 2, pp. 836–869, 2018.
[3] X. Wang, L. Kong, F. Kong, F. Qiu, M. Xia, S. Arnon, and G. Chen, “Millimeter wave
communication: A comprehensive survey,” IEEE Commun. Surveys Tuts., vol. 20, no. 3,
pp. 1616–1653, 2018.
[4] I. Ahmed, H. Khammari, A. Shahid, A. Musa, K. S. Kim, E. De Poorter, and I. Moerman,
“A survey on hybrid beamforming techniques in 5G: Architecture and system model
perspectives,” IEEE Commun. Surveys Tuts., vol. 20, no. 4, pp. 3060–3097, 2018.
[5] B. Yang, Z. Yu, J. Lan, R. Zhang, J. Zhou, and W. Hong, “Digital beamforming-based massive
MIMO transceiver for 5G millimeter-Wave communications,” IEEE Transactions on
Microw. Theory Techn., vol. 66, no. 7, pp. 3403–3418, 2018.
[6] C. Han, L. Yan, and J. Yuan, “Hybrid beamforming for terahertz wireless communications:
Challenges, architectures, and open problems,” IEEE Wireless Commun., vol. 28, no. 4,
pp. 198–204, 2021.
[7] Q. Wu, S. Zhang, B. Zheng, C. You, and R. Zhang, “Intelligent reflecting surface-aided
wireless communications: A tutorial,” IEEE Trans. Commun., vol. 69, no. 5, pp. 3313–
3351, 2021.
37
[8] Q. Wu and R. Zhang, “Towards smart and reconfigurable environment: Intelligent reflecting
surface aided wireless network,” IEEE Commun. Mag., vol. 58, no. 1, pp. 106–112,
2020.
[9] Y. Liu, X. Liu, X. Mu, T. Hou, J. Xu, M. Di Renzo, and N. Al-Dhahir, “Reconfigurable
intelligent surfaces: Principles and opportunities,” IEEE Commun. Surveys Tuts., vol. 23,
no. 3, pp. 1546–1577, 2021.
[10] A. Almohamad, A. M. Tahir, A. Al-Kababji, H. M. Furqan, T. Khattab, M. O. Hasna, and
H. Arslan, “Smart and secure wireless communications via reflecting intelligent surfaces:
A short survey,” IEEE Open J. Commun. Soc., vol. 1, pp. 1442–1456, 2020.
[11] K. M. Faisal and W. Choi, “Machine learning approaches for reconfigurable intelligent
surfaces: A survey,” IEEE Access, vol. 10, pp. 27 343–27 367, 2022.
[12] B. Ozpoyraz, A. T. Dogukan, Y. Gevez, U. Altun, and E. Basar, “Deep learning-aided 6G
wireless networks: A comprehensive survey of revolutionary PHY architectures,” IEEE
Open J. Commun. Soc., vol. 3, pp. 1749–1809, 2022.
[13] N. Samuel, T. Diskin, and A. Wiesel, “Learning to detect,” IEEE Trans. Signal Process.,
vol. 67, no. 10, pp. 2554–2564, 2019.
[14] M. S. Sim, Y.-G. Lim, S. H. Park, L. Dai, and C.-B. Chae, “Deep learning-based mmWave
beam selection for 5G NR/6G with sub-6 GHz channel information: Algorithms and prototype
validation,” IEEE Access, vol. 8, pp. 51 634–51 646, 2020.
[15] C.-J. Chun, J.-M. Kang, and I.-M. Kim, “Deep learning-based channel estimation for massive
MIMO systems,” IEEE Wireless Commun. Lett., vol. 8, no. 4, pp. 1228–1231, 2019.
[16] W. Ma, C. Qi, Z. Zhang, and J. Cheng, “Sparse channel estimation and hybrid precoding
using deep learning for millimeter wave massive MIMO,” IEEE Trans. Commun., vol. 68,
no. 5, pp. 2838–2849, 2020.
38
[17] W. Shen, Z. Qin, and A. Nallanathan, “Deep learning enabled channel estimation for RISaided
wireless systems,” in in Proc. IEEE Global Commun. Conf. (GLOBECOM), 2022,
pp. 4226–4231.
[18] A. Abdallah, A. Celik, M. M. Mansour, and A. M. Eltawil, “Deep-learning based channel
estimation for RIS-aided mmWave systems with beam squint,” in in Proc. 2022 IEEE Int.
Conf. Commun., 2022, pp. 1269–1275.
[19] H. Huang, Y. Peng, J. Yang, W. Xia, and G. Gui, “Fast beamforming design via deep
learning,” IEEE Trans. Veh. Technol., vol. 69, no. 1, pp. 1065–1069, 2020.
[20] H. Huang, W. Xia, J. Xiong, J. Yang, G. Zheng, and X. Zhu, “Unsupervised learningbased
fast beamforming design for downlink MIMO,” IEEE Access, vol. 7, pp. 7599–
7605, 2019.
[21] W. Xia, G. Zheng, Y. Zhu, J. Zhang, J. Wang, and A. P. Petropulu, “A deep learning
framework for optimization of MISO downlink beamforming,” IEEE Trans. Commun.,
vol. 68, no. 3, pp. 1866–1880, 2020.
[22] K. Li, C. Huang, Y. Gong, and G. Chen, “Double deep learning for joint phase-shift and
beamforming based on cascaded channels in RIS-assisted MIMO networks,” IEEE Wireless
Commun. Lett., vol. 12, no. 4, pp. 659–663, 2023.
[23] H. Song, M. Zhang, J. Gao, and C. Zhong, “Unsupervised learning-based joint active and
passive beamforming design for reconfigurable intelligent surfaces aided wireless networks,”
IEEE Commun. Lett., vol. 25, no. 3, pp. 892–896, 2021.
[24] H. He, S. Jin, C.-K. Wen, F. Gao, G. Y. Li, and Z. Xu, “Model-driven deep learning for
physical layer communications,” IEEE Wireless Commun., vol. 26, no. 5, pp. 77–83, 2019.
[25] S. H. Hong, J. Park, S.-J. Kim, and J. Choi, “Hybrid beamforming for intelligent reflecting
surface aided millimeter wave MIMO systems,” IEEE Trans. Wireless Commun., vol. 21,
no. 9, pp. 7343–7357, 2022.
39
[26] K. Ying, Z. Gao, S. Lyu, Y. Wu, H. Wang, and M.-S. Alouini, “GMD-based hybrid
beamforming for large reconfigurable intelligent surface assisted millimeter-wave massive
MIMO,” IEEE Access, vol. 8, pp. 19 530–19 539, 2020.
[27] K. Feng, X. Li, Y. Han, and Y. Chen, “Joint beamforming optimization for reconfigurable
intelligent surface-enabled MISO-OFDM systems,” China Commun., vol. 18, no. 3, pp.
63–79, 2021.
[28] B. Sheen, J. Yang, X. Feng, and M. M. U. Chowdhury, “A deep learning based modeling
of reconfigurable intelligent surface assisted wireless communications for phase shift
configuration,” IEEE Open J. Commun. Soc., vol. 2, pp. 262–272, 2021.
[29] J. Gao, C. Zhong, X. Chen, H. Lin, and Z. Zhang, “Unsupervised learning for passive
beamforming,” IEEE Commun. Lett., vol. 24, no. 5, pp. 1052–1056, 2020.
[30] H. Song, M. Zhang, J. Gao, and C. Zhong, “Unsupervised learning-based joint active and
passive beamforming design for reconfigurable intelligent surfaces aided wireless networks,”
IEEE Commun. Lett., vol. 25, no. 3, pp. 892–896, 2021.
[31] A. Jagannath, J. Jagannath, and T. Melodia, “Redefining wireless communication for 6G:
Signal processing meets deep learning with deep unfolding,” IEEE Trans. Artif. Intell.,
vol. 2, no. 6, pp. 528–536, 2021.
[32] Y. Liu, Q. Hu, Y. Cai, G. Yu, and G. Y. Li, “Deep-unfolding beamforming for intelligent
reflecting surface assisted full-duplex systems,” IEEE Trans. Wireless Commun., vol. 21,
no. 7, pp. 4784–4800, 2022.
[33] J. He, H. Wymeersch, M. Di Renzo, and M. Juntti, “Learning to estimate RIS-aided
mmWave channels,” IEEE Wireless Commun. Lett., vol. 11, no. 4, pp. 841–845, 2022.
[34] X. Zhao, T. Lin, Y. Zhu, and J. Zhang, “Partially-connected hybrid beamforming for spectral
efficiency maximization via a weighted MMSE equivalence,” IEEE Trans. Wireless
Commun., vol. 20, no. 12, pp. 8218–8232, 2021.
40
[35] P. Wang, J. Fang, L. Dai, and H. Li, “Joint transceiver and large intelligent surface design
for massive MIMO mmWave systems,” IEEE Trans. Wireless Commun., vol. 20, no. 2,
pp. 1052–1064, 2021.
[36] F. Sohrabi and W. Yu, “Hybrid digital and analog beamforming design for large-scale
antenna arrays,” IEEE J. Sel. Topics Signal Process., vol. 10, no. 3, pp. 501–513, 2016.
41