研究生: |
蔡暟耘 Tsai, Kai-Yun |
---|---|
論文名稱: |
p53的R248Q突變改變了高分化漿液性卵巢癌中的分子運輸和標靶藥物反應 R248Q mutation of p53 alters molecular trafficking and targeted drug responses in high-grade serous ovarian carcinoma |
指導教授: |
莊永仁
Chuang, Yung-Jen |
口試委員: |
詹鴻霖
林玉俊 |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 生物資訊與結構生物研究所 Institute of Bioinformatics and Structural Biology |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 英文 |
論文頁數: | 43 |
中文關鍵詞: | p53 、表皮生長因子受體(EGFR) 、Akt 、MDM2 、複合式療法 |
外文關鍵詞: | p53, epidermal growth factor receptor (EGFR), Akt, mouse double minute 2 homolog (MDM2), combination therapy |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
腫瘤抑制蛋白p53及其調節因子的功能異常是人類癌症的常見標誌。具體而言,高達96%的高分化漿液性卵巢癌(high-grade serous ovarian carcinoma, HGSOC)可檢測到p53突變。此外,突變的p53可能透過表皮生長因子受體(EGFR)信號傳導的持續激活而導致致癌的「功能獲得」表現型。在這項研究中,我們調查了p53突變是否會改變HGSOC中EGFR相關的信號傳導和其治療策略。我們選擇了p53 R248Q突變體(p53R248Q)用於本研究,該突變體在HGSOC中的突變頻率是最高的。在本研究中,我們發現當p53R248Q瞬時過表達時,Akt(EGFR下游信號傳導的關鍵分子)的磷酸化會顯著增加。透過免疫細胞化學染色分析進一步顯示,在p53R248Q過表達後,幾種Akt依賴性的介質分子在細胞內以獨特的模式易位。過去我們已經證明,gefitinib和JNJ-26854165對EGFR和MDM2-p53途徑的聯合抑制在p53突變的HGSOC細胞中發揮強烈的協同致死作用。接著本研究的分析顯示,在這種組合抑制下,EGFR和MDM2的細胞內易位模式將被破壞。此外,當我們進一步比較不同p53狀態細胞對gefitinib和JNJ-26854165的藥物反應時,我們發現在過表達p53R248Q的細胞中對單一藥物或組合抑制治療的敏感性也發生了改變。綜合以上所述,我們的研究結果證明,p53的R248Q突變導致信號傳導、分子運輸和藥物反應的顯著變化,這可能有助於促進我們對p53和癌症生物學的理解,並改善HGSOC的治療策略。
Dysfunctions of the tumor suppressor p53 and its regulators are common hallmarks of human cancers. Specifically, p53 mutations are detected in up to 96% of high-grade serous ovarian carcinoma (HGSOC). Moreover, mutant p53 may cause oncogenic gain-of-function phenotypes in sustained activation of epidermal growth factor receptor (EGFR) signaling. In this study, we investigated whether p53 mutation could affect EGFR-related signaling and therapeutic strategies in HGSOC. We selected the p53 R248Q mutant (p53R248Q), which has the highest mutation frequency in ovarian cancer, for this study. In this study, we showed that the phosphorylation of Akt, a critical molecule of EGFR downstream signaling, increased significantly when p53R248Q was transiently overexpressed. Immunocytochemistry analysis further showed that upon p53R248Q overexpression, several Akt-dependent mediators translocate in unique patterns within the cell. Previously, we demonstrated that the combined inhibition of EGFR and MDM2-p53 pathways by gefitinib and JNJ-26854165 exerts a strong synergistic lethal effect on p53-mutated HGSOC cells. Subsequent analysis revealed that under this combined inhibition, the cytonuclear trafficking of EGFR and MDM2 is disrupted. Moreover, when we further compared gefitinib and JNJ-26854165 responses in different p53 status cells, we found that the sensitivity to the single- or combined-inhibition treatments is also altered in p53R248Q-overexpressing cells. In summary, our findings suggest that the R248Q mutation of p53 causes significant changes in signaling transduction, molecular trafficking and drug responses, which might help to advance our understanding of p53 and cancer biology and improve therapeutic strategies for HGSOC.
1. Sankaranarayanan, R. and J. Ferlay, Worldwide burden of gynaecological cancer: the size of the problem. Best Pract Res Clin Obstet Gynaecol, 2006. 20(2): p. 207-25.
2. McCluggage, W.G., Morphological subtypes of ovarian carcinoma: a review with emphasis on new developments and pathogenesis. Pathology, 2011. 43(5): p. 420-32.
3. Reid, B.M., J.B. Permuth, and T.A. Sellers, Epidemiology of ovarian cancer: a review. Cancer biology & medicine, 2017. 14(1): p. 9-32.
4. Brachova, P., et al., TP53 oncomorphic mutations predict resistance to platinum and taxanebased standard chemotherapy in patients diagnosed with advanced serous ovarian carcinoma. Int J Oncol, 2015. 46(2): p. 607-18.
5. Olivier, M., M. Hollstein, and P. Hainaut, TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harbor perspectives in biology, 2010. 2(1): p. a001008-a001008.
6. Cole, A.J., et al., Assessing mutant p53 in primary high-grade serous ovarian cancer using immunohistochemistry and massively parallel sequencing. Sci Rep, 2016. 6: p. 26191.
7. Hamroun, D., et al., The UMD TP53 database and website: update and revisions. Hum Mutat, 2006. 27(1): p. 14-20.
8. Olivier, M., et al., The IARC TP53 database: new online mutation analysis and recommendations to users. Hum Mutat, 2002. 19(6): p. 607-14.
9. Joerger, A.C. and A.R. Fersht, Structure-function-rescue: the diverse nature of common p53 cancer mutants. Oncogene, 2007. 26(15): p. 2226-42.
10. Oren, M. and V. Rotter, Mutant p53 gain-of-function in cancer. Cold Spring Harb Perspect Biol, 2010. 2(2): p. a001107.
11. Adorno, M., et al., A Mutant-p53/Smad complex opposes p63 to empower TGFbeta-induced metastasis. Cell, 2009. 137(1): p. 87-98.
12. Muller, P.A., et al., Mutant p53 drives invasion by promoting integrin recycling. Cell, 2009. 139(7): p. 1327-41.
13. Sauer, L., et al., Mutant p53 initiates a feedback loop that involves Egr-1/EGF receptor/ERK in prostate cancer cells. Oncogene, 2010. 29(18): p. 2628-37.
14. Wang, W., et al., Mutant p53-R273H gains new function in sustained activation of EGFR signaling via suppressing miR-27a expression. Cell Death Dis, 2013. 4: p. e574.
15. Yallowitz, A.R., et al., Mutant p53 Amplifies Epidermal Growth Factor Receptor Family Signaling to Promote Mammary Tumorigenesis. Mol Cancer Res, 2015. 13(4): p. 743-54.
16. Muller, P.A.J. and K.H. Vousden, Mutant p53 in cancer: new functions and therapeutic opportunities. Cancer cell, 2014. 25(3): p. 304-317.
17. Hanel, W., et al., Two hot spot mutant p53 mouse models display differential gain of function in tumorigenesis. Cell Death Differ, 2013. 20(7): p. 898-909.
18. Lee, J.G., et al., Mutant p53 promotes ovarian cancer cell adhesion to mesothelial cells via integrin beta4 and Akt signals. Sci Rep, 2015. 5: p. 12642.
19. Steelman, L.S., et al., Roles of the Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR pathways in controlling growth and sensitivity to therapy-implications for cancer and aging. Aging, 2011. 3(3): p. 192-222.
20. Martelli, A.M., et al., The emerging multiple roles of nuclear Akt. Biochim Biophys Acta, 2012. 1823(12): p. 2168-78.
21. Mayo, L.D. and D.B. Donner, A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus. Proceedings of the National Academy of Sciences of the United States of America, 2001. 98(20): p. 11598-11603.
22. Huang, W.C., et al., Nuclear translocation of epidermal growth factor receptor by Akt-dependent phosphorylation enhances breast cancer-resistant protein expression in gefitinib-resistant cells. J Biol Chem, 2011. 286(23): p. 20558-68.
23. Brand, T.M., et al., Nuclear EGFR as a molecular target in cancer. Radiother Oncol, 2013. 108(3): p. 370-7.
24. Vasey, P.A., Resistance to chemotherapy in advanced ovarian cancer: mechanisms and current strategies. Br J Cancer, 2003. 89 Suppl 3: p. S23-8.
25. Siwak, D.R., et al., Targeting the epidermal growth factor receptor in epithelial ovarian cancer: current knowledge and future challenges. J Oncol, 2010. 2010: p. 568938.
26. Gui, T. and K. Shen, The epidermal growth factor receptor as a therapeutic target in epithelial ovarian cancer. Cancer Epidemiol, 2012. 36(5): p. 490-6.
27. Sheng, Q. and J. Liu, The therapeutic potential of targeting the EGFR family in epithelial ovarian cancer. British journal of cancer, 2011. 104(8): p. 1241-1245.
28. Mayr, D., et al., Analysis of gene amplification and prognostic markers in ovarian cancer using comparative genomic hybridization for microarrays and immunohistochemical analysis for tissue microarrays. Am J Clin Pathol, 2006. 126(1): p. 101-9.
29. Ginath, S., et al., Expression of heparanase, Mdm2, and erbB2 in ovarian cancer. Int J Oncol, 2001. 18(6): p. 1133-44.
30. Dogan, E., et al., p53 and mdm2 as prognostic indicators in patients with epithelial ovarian cancer: a multivariate analysis. Gynecol Oncol, 2005. 97(1): p. 46-52.
31. Chang, S.J., et al., Proteomic investigating the cooperative lethal effect of EGFR and MDM2 inhibitors on ovarian carcinoma. Arch Biochem Biophys, 2018. 647: p. 10-32.
32. Chou, T.C. and P. Talalay, Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul, 1984. 22: p. 27-55.
33. Hudson, L.G., et al., Activated epidermal growth factor receptor in ovarian cancer. Cancer treatment and research, 2009. 149: p. 203-226.
34. Lafky, J.M., et al., Clinical implications of the ErbB/epidermal growth factor (EGF) receptor family and its ligands in ovarian cancer. Biochim Biophys Acta, 2008. 1785(2): p. 232-65.
35. Meier, R., et al., Mitogenic activation, phosphorylation, and nuclear translocation of protein kinase Bβ. Journal of Biological Chemistry, 1997. 272(48): p. 30491-30497.
36. Leinninger, G.M., et al., Phosphatidylinositol 3-kinase and Akt effectors mediate insulin-like growth factor-I neuroprotection in dorsal root ganglia neurons. The FASEB journal, 2004. 18(13): p. 1544-1546.
37. Borgatti, P., et al., Threonine 308 phosphorylated form of Akt translocates to the nucleus of PC12 cells under nerve growth factor stimulation and associates with the nuclear matrix protein nucleolin. Journal of cellular physiology, 2003. 196(1): p. 79-88.
38. Tzivion, G., M. Dobson, and G. Ramakrishnan, FoxO transcription factors; Regulation by AKT and 14-3-3 proteins. Biochim Biophys Acta, 2011. 1813(11): p. 1938-45.
39. Chou, T.C., Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev, 2006. 58(3): p. 621-81.
40. Brosh, R. and V. Rotter, When mutants gain new powers: news from the mutant p53 field. Nat Rev Cancer, 2009. 9(10): p. 701-13.
41. Arden, K.C. and W.H. Biggs, 3rd, Regulation of the FoxO family of transcription factors by phosphatidylinositol-3 kinase-activated signaling. Arch Biochem Biophys, 2002. 403(2): p. 292-8.
42. Zhang, X., et al., Akt, FoxO and regulation of apoptosis. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 2011. 1813(11): p. 1978-1986.
43. Mayo, L.D., et al., PTEN protects p53 from Mdm2 and sensitizes cancer cells to chemotherapy. Journal of Biological Chemistry, 2002. 277(7): p. 5484-5489.
44. Moll, U.M. and O. Petrenko, The MDM2-p53 interaction. Mol Cancer Res, 2003. 1(14): p. 1001-8.
45. Wang, J., et al., AKT Hyperactivation and the Potential of AKT-Targeted Therapy in Diffuse Large B-Cell Lymphoma. Am J Pathol, 2017. 187(8): p. 1700-1716.
46. Lo, H.W., et al., Novel prognostic value of nuclear epidermal growth factor receptor in breast cancer. Cancer Res, 2005. 65(1): p. 338-48.
47. Chaar, I., et al., Relationship between MDM2 and p53 alterations in colorectal cancer and their involvement and prognostic value in the Tunisian population. Appl Immunohistochem Mol Morphol, 2013. 21(3): p. 228-36.
48. Habashy, H.O., et al., FOXO3a nuclear localisation is associated with good prognosis in luminal-like breast cancer. Breast Cancer Res Treat, 2011. 129(1): p. 11-21.
49. Agarwal, R. and S.B. Kaye, Ovarian cancer: strategies for overcoming resistance to chemotherapy. Nature Reviews Cancer, 2003. 3: p. 502.
50. Yang, W., N.G. Dolloff, and W.S. El-Deiry, ERK and MDM2 prey on FOXO3a. Nature Cell Biology, 2008. 10: p. 125.