簡易檢索 / 詳目顯示

研究生: 伍安義
An-Yi Wo
論文名稱: 以化學還原法合成奈米銀-銅粒子及其特性分析研究
Preparation and characterization of Ag-Cu bimetallic nanoparticles by chemical reduction method
指導教授: 周更生
Kan-Sen Chou
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 67
中文關鍵詞: 奈米粒子雙金屬粒子化學還原法銀-銅
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要

    本研究室以葡萄糖作為還原劑,利用化學還原法製備奈米級Ag- Cu粒子,在此過程中還必須加入鹼劑及保護劑。鹼劑是為促進反應的進行,選用的是urea+NaoH的混合型鹼劑系統;而保護劑則是為了不使粒子之間彼此聚集,選用的是分子量40000的PVP。反應的溫度於高溫(85oC)下,以利於尿素的裂解及加快反應的速度。

    在研究中我們已經可以製備出不同組成之Ag-Cu奈米粒子,並瞭解它們的粒徑大小;而PVP濃度及尿素濃度亦會影響到粒子之大小與分佈,研究結果顯示PVP若是過量粒子會變大,而尿素用量的增加有助於粒子的均一化。

    在粒子微結構的鑑定方面,可由EDS來獲知整顆粒子組成,再以XPS得知粒子表面組成,再加上Ag、Cu轉化率與時間關係圖的輔助,吾人推測粒子之結構為Ag-AgCu-Ag(類似球型的三明治結構)。

    而在將製備好的粒子作應用之前還需要進行純化的步驟,吾人以丙酮清洗利用極性的差異使奈米粒子沈降於容器底部,而多餘的自由PVP(未吸附於奈米粒子上者)則留在上層,經過清洗後之奈米粒子其純度可到達87wt%。

    在純化完成後奈米粒子膠體溶液即可作為導電墨水,將墨水塗畫在PI基板上形成線路,並給予高溫熱處理,熱處理完後即可導電,在此我們探討三種不同組成導線之電遷移現象,結果顯示導線中所含的銅元素成分越高,導線之電阻越穩定,不隨著時間上升。


    第一章 前言 1 1.1 奈米粒子簡介 1 1.2 奈米粒子的性質 1 1.3 奈米粒子的應用 3 1.4 研究動機 4 第二章 文獻回顧 2.1 化學還原法製備奈米粒子 5 2.2 銅奈米粒子製備方法 7 2.3 雙金屬奈米粒子之製備 11 2.4 銀銅合金於工業上之用途 16 2.5 電遷移之原理 17 2.6 本實驗室奈米銀製程回顧 19 2.7 奈米金屬微粒的燒結行為 20 第三章 銀-銅奈米粒子之製備 3.1 實驗藥品 23 3.2 實驗儀器 23 3.3 實驗流程 24 3.3-1 化學還原法合成銀-銅奈米粒子 24 3.3-2 合成粒子的純化 27 3.3-3 分析方法 29 第四章 銀-銅奈米粒子合成之實驗結果及討論 4-1 銅電極及銀電極之檢量線 30 4-2 原子吸收光譜(AA)之檢量線 31 4.3 轉化率及最佳製程 33 4-4 反應條件對奈米粒子粒徑之影響 37 4-5 粒子的結構鑑定 46 4-6 Ag-Cu粒子之燒結現象研究 49 4-7 Ag-Cu粒子之TGA分析 52 4-8 電遷移現象之研究 54 4-9 金屬之色彩與光澤 57 第五章 結論 63 第六章 參考文獻 64 圖目錄 圖2.3-1 金-銀奈米粒子的UV光譜圖 11 圖2.3-2 不同莫耳比之Aucore –Agshell 核殼型奈米粒子UV吸收光譜 12 圖2.3-3 不同莫耳比之Agcore-Aushell 核殼型奈米粒子UV吸收光譜 12 圖2.3-4 金銀雙金屬奈米粒子之UV光譜 13 圖2.3-5 奈米粒子最大吸收峰對時間的追蹤圖 13 圖2.3-6 Cu/Cu雙金屬奈米粒子生成機制 14 圖2.3-7 Au-Cu奈米粒子經燒結後而產生均一的合金相 14 圖2.3-8 Au-Cu粉末經過不同溫度熱處理之XRD圖譜 15 圖2.4-1 Ag-Cu合金相圖 16 圖2.5-1 鋁離子在晶格位能井中承受電力(FE)和電子風力(FP) 之示意圖 17 圖2.7-1奈米銀堆積薄膜之燒結行為 21 圖2.7-2 不同熱處理溫度下,奈米銀薄膜之電阻率 22 圖3.3-1.1 製備銀銅合金奈米粒子流程圖 26 圖3.3-2.1 加入丙酮以幫助粒子沉降之示意圖 27 圖3.3-2.2 銀-銅合金奈米粒子純化流程圖 28 圖4-1.1 銀離子電極之檢量線 30 圖4-1.2 銅離子電極之檢量線 31 圖4-2.1 銅離子AA校正曲線 32 圖4-2.2 銀離子AA校正曲線 32 圖4-3.1 尿素用量與轉化率關係圖 34 圖4-3.2 銀銅奈米粒子前驅鹽與產物組成關係圖 35 圖4-4.1 組成為Ag91-Cu9之奈米粒子TEM照片 38 圖4-4.2 組成為Ag84-Cu16之奈米粒子TEM照片 39 圖4-4.3 組成為Ag77-Cu23之奈米粒子TEM照片 39 圖4-4.4 組成為Ag72-Cu28之奈米粒子TEM照片 40 圖4-4.5 組成為Ag65-Cu35之奈米粒子TEM照片 40 圖4-5.6 PVP用量(相對於原本的用量)與粒子平均粒徑的關係 41 圖4-4.6 添加尿素時還原奈米銀 42 圖4-4.7 無添加尿素時還原奈米銀 42 圖4-4.8 尿素濃度為0M時粒子之TEM照片 43 圖4-4.9 尿素濃度為0.33M時粒子之TEM照片 44 圖4-4.10 尿素濃度為0.66M時粒子之TEM照片 44 圖4-4.11 尿素濃度為1.0M時粒子之TEM照片 45 圖4-4.12 尿素濃度為1.33M時粒子之TEM照片 45 圖4-5.1 Ag-Cu奈米粒子之EDS分析 47 圖4-5.1 Ag-Cu奈米粒子之XPS分析 48 圖4-5.3 反應時間與轉化率之關係 48 圖4-5.4 銀-銅奈米粒子結構圖 49 圖4-6.1 Ag77-Cu23微粉之XRD圖 50 圖4-6.2 Ag77-Cu23微粉經熱處理後之XRD圖譜 51 圖4-7.1 經清洗過後之銀銅粒子TGA分析圖 53 圖4-8.1 將導電墨水填充於筆中 55 圖4-8.2 塗畫在PI上並進行熱處理 55 圖4-8.3 熱處理完成後線路即可導電 55 圖4-8.4 捲曲的PI膜 56 圖4-8.5 將PI膜黏貼在氧化鋁基板上 56 圖4-8.6 電遷移實驗設計圖 56 圖4-8.7 不同組成導線之電阻對時間關係圖 57 圖4-9.1 沒經過熱處理 58 圖4-9.2 經過150oC,30min熱處理 58 圖4-9.3 經過200oC,30min熱處理 59 圖4-9.4 經過250oC,30min熱處理 59 圖4-9.5 經過300oC,30min熱處理 60 圖4-9.6 Ag薄膜之反射光譜圖 61 圖4-9.7 Ag90Cu10薄膜之反射光譜圖 62 圖4-9.8 Ag80Cu20薄膜之反射光譜圖 62 圖4-9.9 Ag70Cu30薄膜之反射光譜圖 63 表目錄 表1.2-1 銅奈米粒子粒徑與表面能量 3 表1.2-2 奈米粒子的熔點變化 3 表2.1-1 各種金屬離子的還原條件 6 表2.1-2 不同銀錯離子的還原電位 6 表2.2-1 銅粒子製備方法 10 表4-3.1 實驗配方表 32 表4-3.2 銀銅奈米粒子前驅鹽與產物組成關係表 36 表4-4.1 實驗條件表 36 表4-4.1 粒子組成與平均粒徑之關係表 41 表4-4.2 以尿素為變因之反應條件表 43 表4-4.2 不同尿素濃度對粒子粒徑及分布的影響 46 表4-6.1 Ag77Cu23微粉在不同溫度下熱處理的XPS元素分析 52 表4.6-2 Ag77-Cu23微粒在熱處理過後之粒徑大小及繞射峰角度變化52

    Amandeep, K.S. and R.E. Schaak,“Synthesis of Atomically Ordered AuCu and AuCu3 Nanocrystals from Bimetallic Nanoparticle Precursors”, J. AM. CHEM. SOC., 126, 6667-6672 (2004).
    Bokshits,Y.V., G.P. Shevchenko, A.N.Ponyavina and S.K.Rakhmanov, “Formation of Silver and Copper Nanoparticles upon the Reduction of Their Poorly Soluble Precursors in Aqueous Solution”, J.colloid, 66, 517-522 (2004)
    Corn, et al., J. Appl. Phys. 67, 3328 (1990).
    Cross, et al., J. Appl. Phys. 67, 3328 (1990).
    Chen, P.X., W.J. Lin and K.L.Tan, ”Synthesis of Cu nanoparticles and microsized fibers by using carbon nanotubes as a template ”, J.Phys.Chem.B, 103(22), 4559-4561 (1999)
    Chanda, M. and A.K. Mukherjee, Ind.Eng.Chem.Res., 26 ,2340 (1987)
    Chang ,C.Y. and S.M. Sze, ULSI Technology, the McGRAW-HILL, P. 663 (1996)
    Curtis, A.C., D.G. Duff, P.P. Edwards, D.A. Jefferson, B.F. Johnson, A.I. Kirkland and A.S. Wallace, ”Preparation and structural characterization of an unprotected Copper Sol”, J.Phys.Chem , 92 ,2270-2275 (1998)
    Chen, D.H. and C.J. Chen,“Formation and characterization of Au–Ag bimetallic nanoparticles in water-in-oil microemulsions”, J. Mater. Chem. ,12 ,1557-1562 (2002)
    EI-sayed, M.A., and Z.L. Wang, J. Phys., Chem. B , 102, 6145(1998)
    Fendler, J.H., Chem. Rev. , 87, 877(1987)
    Floriano, P.N., C.O. Noble, J.M. Schoonmaker, E.D. Poliakoff, R.L. McCarley,
    "Cu(0) nanoclusters derived from poly (propylene imine) dendrimer complexs of Cu()", J.Am.Chem.Soc., 123(43), 10545-10553 (2001)
    Fraday, M.P., Trans.R.Soc.London , 147, 145 (1857)
    Zhu, H.T, C.Y. Zhang,Y.S. Yin, ”Rapid synthesis of copper nanoparticles by sodium hypophospite reduction in ethylene glycol under microwave irradiation”, J.Crystal Growth , 270, 722-728 (2004)
    Heng, L.A., ”Formation and absorption spectrum of copper nanoparticles from the radiolytic reduction of Cu(CN)2”, J.Phys.Chem.B., 104(6), 1206-1211 (2000)
    Hodak, H.J., A. Henglein, M. Giersig and G.V. Hartland., “Laser-Induced Inter-Diffusion in AuAg Core-Shell Nanoparticles”
    , J. Phys. Chem. B , 104, 11708-11718 (2000)
    Hirai, H., H.Wakabayayashi, and M. Komiyama, "Preparation of polymer-protected colloidal dispersions of copper", Bull.Chem.Soc.Jpn., 59, 367-372 (1986)
    Hsu, W.P., R.Yu and E. Matijevic, ”Preparation and characterization of uniform particles of pure and coated metallic copper”,Powder Technology
    , 63, 265-275 (1990)
    Hunag, C.Y., S.R. Sheen, "Synthesis of nanocrystalline and monodispersed copper particles of uniform spherical shape", Mater.Left., 30, 357 (1997)
    Huang, H.H., G.Q. Yan, Y.M. Kek, C.H. Chew, G.Q. Xu, P.S. Oh and S.H. Tang , "Synthehesis,characterization,and nonlinear optical properties of copper nanoparticles", Langmuir, 13, 172 (1997)
    Hunter, R.J., Introduction to Modern Colloid Science (1993)
    Jackelen, A.L., M. Jungbauer, and G.N. Glavee, "Nanoscale materials synthesis.1.Solvent effects on hydridobrate reduction of copper ions ", Langmuir, 15(7), 2322-2326 (1999)
    Joshi, S.S., S.F. Patil, V. Iyer and S. Mahumuni, ”Radiation induced synthesis and characterization of copper Nanoparticles”, NanoStruct.Mater., 10(7), 1135-1144 (2000)
    Kapoor, S., R. Joshi and T. Mukheiiee, "Influcencee of I- anions on the formation and stabilization of copper nanoparticles", Chem.Phys.Lett., 354, 443 (2002)
    Komarov, V.P., V.B. Lazarev, L.S. Shaplygin, "Finely divided copper powder", Lnorg.Mater., 84, 669 (1984)
    Kwan, K., K.L. Kim and S.J. Lee, “Surface enrichment of Ag atoms in Au/Ag alloy nanoparticlesrevealed by surface enhanced Raman scattering spectroscopy” ,Chemical Physics Letters ., 403 ,77–82 (2005)
    Limin, Q., M. Jiming and S. Julin,” Synthesis of Cu nanoparticles in nonionic water-in-oil microemulsions”, J.Colloid Inter.Sci., 186(2), 498-500 (1997)
    Link, S., Z.L. Wang, and M.A. El-Sayed , “Alloy Formation of Gold-Silver Nanoparticles and the Dependence of the Plasmon
    Absorption on Their Composition”, Georgia Institute of Technology, 30332-0400 (1999)
    Lisiecki, I.H. and M.P. Pileni, ”Synthesis of copper metallic clusters using reverse micelles as microreactors”, J.Am.Chem.Soc., 115, 3887-3896 (1993)
    Lisiecki, I.H., K.S. Kongehl, W.J. Urban, and M.P. Pileni, Langmuir, 16, 8802-8807 (2000)
    Mamoory, R.S., G.P. Demopoulos and R.A. Drew, ”Preparation offine copper powders from organic media by reaction with hydrogen under pressure:part Π.the kinetics of paericle nucleation,growth and dispersion”., Metal and Mate.Trans.B, 27, 585-594 (1996)
    Pileni, M.P. and I. Lisiecki, ”Nanometer metallic copper particle synthesis in reverse micelles”,Colloids Surf.A, 80, 63-68(1993)
    Pileni, M.P., T.G. Krzywicki, J. Tanori, A. Filankembo and J.C. Dedieu, ”Template design of microreactor with colloidal assemblies:control the growth of copper metal rods”, Langmuir, 14, 7359-7363 (1998)
    Qin, S., J. Dong, G. Chen, ”Preparation of Cu nanoparticles from water-in-oil microemulsuons.”, J.Colloid Inter.Sci., 216(2), 230-234 (1999)
    Reetz, M.T.; W. M; Breinbauer., T. Thurn-Albrecht, W. Vogel, “ Size-selective electrochemical preparation of surfactant-stabilized Pd-, Ni- and Pt/Pd colloids”., Chemistry (Weinheim an der Bergstrasse, Germany), 7(5), 1084-94 (2001)
    Schmid, G., “Clusters and colloids:from theory to applications”, VCG,Weinheim (1994)
    Sudhir, K., D.K. Palit, T. Mukherjee, ”Preparation,characterization and surface modification of Cu metal nanoparticles”, Chemical Physics Letters,
    355, 383-387 (2002)
    Yang, J., J.Y. Lee, L.X. Chen and H.P. Too, “A Phase-Transfer Identification of Core-Shell Structures in Ag-Pt Nanoparticles”, J. Phys. Chem. B, 109, 5468-5472 (2005)
    Yaoshun, J., H. Niu, M. Wu, M. Ning, H. Zhu, Q. Chen, “Sonochemical preparation of bimetallic Co/Cu nanoparticles in aqueous solution”, Materials Research Bulletin, 40, 1623–1629 (2005)
    Yasuo, G., R. Igarashi, Y. Ohkoshi, M. Nagura, K. Akamatsu and S. Deki, ”Prepartion and structure of copper nanoparticle/poly(acrylic acid) composite films”, J.Mater Chem, 10, 2548-2552 (2000)
    Zachira, C.D., M. Simmons, and C. Persad, “Obtainable Microstructures in Electrical Conductors Made of a Copper–Silver Alloy”, IEEE TRANSACTIONS ON MAGNETICS, 39 (2003)
    林育右, ”以化學還原法合成導電性銅奈米微粉之研究”, 國立成功大學碩士論文(2003)
    莊萬發編, “超微粒子理論應用”, 復漢出版社(1995)
    趙承琛, “介面科學基礎”, 復文書局(1987)
    張有義, 郭蘭生, “膠體及介面化學入門”, 高立圖書有限公司(1997)
    陳東佑, 銅奈米粒子的表面修飾研究, 國立成功大學碩士論文(2000)
    廖建勛, “奈米材料的發展動態”, 化工資訊, 2, 12(1998)
    賴宏仁, “超微結構的奈米材料”,科學月刊, 3, 31(2000)
    盧育杰, “葡萄糖還原系統下備製奈米銀及其反應動力學之研究”, 國立清華大學碩士論文(2005)
    魏碧玉, 賴明雄, “奈米材料在光學上的應用及其製造法”, 工業材料,153期(1999)
    蘇品書編 ,“超微粒子材料技術”,復漢出版社(1989)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE