簡易檢索 / 詳目顯示

研究生: 聶君文
Chun-Wen Nieh
論文名稱: 利用分子束磊晶成長磊晶氧化釔薄膜於(111)矽基材之特性研究
Characteristics of Yttrium Oxide Thin Films Deposited on Si (111) by Molecular Beam Epitaxy
指導教授: 洪銘輝
Ming-Hwei Hong
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 78
中文關鍵詞: 磊晶X光散射繞射高介電常數氧化釔
外文關鍵詞: Epitaxy, X-ray scattering, Diffraction, High-k dielectrics, Yttrium, Oxides
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 利用分子束磊晶及電子束蒸鍍的技術,高品質奈米磊晶氧化釔薄膜已經成功地磊晶在(111)晶面方向的矽基材上了。

    利用同步輻射高亮度、高解析度X光繞射、X光反射率的技術,可有效地研究超薄磊晶薄膜之結構特性。高解析度穿透式電子顯微鏡技術及臨場反射式高能電子繞射的圖形亦幫助我們來了解磊晶薄膜之結構形態。由於介面結構對於磊晶材料亦相當重要,臨場X光電子能譜技術及中能量離子散射技術也被應用在介面化學鍵結的分析上。磊晶高介電之氧化釔薄膜之電性分析在此研究中也將討論到。

    由結構的量測結果,此磊晶氧化釔薄膜具有立方晶相的結構,同時此薄膜具有極佳的結晶性以及非常陡峭的界面和平滑的表面結構。此磊晶薄膜之(111)平面與(111)晶向之矽基材磊晶相當的好,同時在平面上則以矽 [-110] ||氧化釔 [-101]的結晶方向為主,側向的晶粒大小平均約有20奈米。尤其從高解析度的截面穿隧式電子顯微鏡影像中,同時也証明了此磊晶薄膜具有非常好的結晶特性及界面結構。而由臨場的X光電子能譜的分析結果可知在氧化釔及矽基材之界面形成了非常薄的矽酸釔的結構,同時在表面的氧化釔薄膜缺乏少量的氧元素。但即便是如此,此磊晶的氧化釔薄膜仍可表現非常好的絕緣特性,其漏電流密度約為5.5×10-8安培╱平方公分。因此我們可以說,吾人利用分子束磊晶方式成長異質磊晶氧化釔奈米薄膜於(111)之矽基材上得到非常好的結構特性。


    High-quality single-crystal Y2O3 nano films have been grown epitaxially on Si (111) despite a lattice mismatch of 2.4 %.
    The films were electron beam evaporated from pure compacted powder Y2O3 target by molecular beam epitaxy (MBE). Structural and morphological studies were carried out by x-ray diffraction, reflectivity, and high-resolution transmission electron microscopy (HRTEM), with the initial epitaxial growth monitored by in-situ reflection high energy electron diffraction (RHEED). Chemical analysis were performed by in-situ X-ray photoelectron spectroscopy (XPS) and medium energy ion scattering (MEIS) accompanied with electrical measurement of I-V and C-V characteristics.
    The films have the cubic bixbyite phase with a remarkably uniform thickness and highly structural perfection. The films are well aligned with the Si substrate with an orientation relationship of Si (111)//Y2O3 (111), and a dominant in-plane expitaxy of Si [-110] || Y2O3 [-101] with domain size about 20 nm. Cross-sectional HRTEM micrographs confirm the observations using x-ray diffraction and reflectivity, namely the structural perfection and very sharp interface between the oxide and Si. From in-situ XPS results, an interfacial silicate layer was observed with an oxygen-deficient oxide layer on the top of the film. Even so, excellent leakage performance (JL~5.5×10-8A/cm2) is still observed. It is remarkable that a nano oxide grew excellently hetero-epitaxially on Si.

    Table of Contents Table Captions Figure Captions Abstract Chapter 1 Ultrathin Epitaxial Dielectric Thin Films on Silicon 1.1 Introduction 1.1.1 Call for Epitaxial High □ (Crystalline Oxide on Silicon) 1.1.2 Yttrium Oxide as Alternative Epitaxial Gate Dielectrics 1.2 Research Background 1.2.1 Y2O3 on Si (001) 1.2.2 Y2O3 on Si (111) 1.3 Structural Characteristics 1.4 Summary Chapter 2 Instrumentation and Theories 2.1 Multi-Chamber UHV-MBE System 2.1.1 Molecular Beam Epitaxy 2.1.2 Reflection High Energy Electron Diffraction 2.1.3 Residual Gas Analyzer 2.1.4 In-situ X-ray Photoelectron Spectroscopy 2.2 Structural Characterization by X-Ray Scattering 2.2.1 Heterogeneous Strain Fields in Epitaxial Thin Films and X-Ray Scattering Techniques 2.2.2 X-Ray Reflectivity 2.2.3 Principles of X-Ray Diffraction 2.2.3.1 The Basic Phenomenon 2.2.3.2 The Reciprocal Lattice 2.2.3.3 Structure Factor and Selection Rule 2.2.4 Set-up of Four-Circle Diffractometer 2.2.5 Orientation Matrix Transformation 2.2.6 Line Profile Analysis 2.2.6.1 Finite Size Effect and Scherrer’s formula 2.2.6.2 Strain-Induced Peak Broadening 2.2.6.3 Broadening of Size and Strain Separation- Williamson-Hall Plot 2.2.7 Longitudinal Scans 2.2.8 Transverse Scans and Theta Rocking Curve Chapter III Experimental Procedure 3.1 Deposition Process in Integrated MBE System 3.1.1 Substrate Preparation 3.1.2 Oxide Deposition 3.1.3 In-situ XPS 3.2 Structural Characterizations 3.2.1 High Resolution Transmission Electron Microscope (HRTEM) 3.2.2 X-Ray Scattering and Reflectivity 3.3 Electrical Properties Measurement 3.4 Medium Energy Ion Scattering Chapter IV Results and Discussion 4.1 Structural Characteristics 4.1.1 Crystallinity of Epitaxial Y2O3 Thin Films from RHEED 4.1.2 Thickness and Surface/Interface Roughness Estimation 4.1.3 Phase Identification and Orientation Analysis 4.1.4 In-plane Transverse Scans 4.1.5 Strain and Relaxation Behavior 4.1.6 High Resolution Transmission Electron Microscope 4.2 Electrical Properties 4.2.1 J-E characteristics 4.2.2 C-V characteristics 4.3 Chemical Reactions at Interfaces 4.3.1 MEIS 4.3.2 In-situ XPS 4.3.3 Reactions at the Interfacial Layers Chapter V Conclusion References

    [1] M. Gurvitch, L. Manchanda, and J. M. Gibson, Appl. Phys. Lett. 81, 2014 (1998)
    [2] J. Robertson, J. Vac. Sci. Technol. B 18, 1785 (2000)
    [3] P. W. Peacock, J. Robertson, J. Appl. Phys. 92, 4712 (2002)
    [4] K. J. Hubbard and D. G. Schlom, J. Mater. Res. 11, 2757 (1996)
    [5] A. Wakahara, H. Oishi, H. Osaka, A. Yoshida, Y. Koij, and M. Ishida, J. Cryst. Growth 236, 21 (2002)
    [6] S. Matsubara, N. Shohata, and M. Mikami, Jpn. J. Appl. Phys. Part 1 24, 10 (1985)
    [7] J. Kim, R. Mehandru, B. Luo, F. Ren, B. P. Gila, A. H. Onstine, C. R. Abernathy, S. J. Pearton and Y. Irokawa, Appl. Phys. Lett. 81, 1687 (2002)
    [8] G. Mavrou, G. Vellianitis, G. Apostolopoulos, K. Argyropoulos, A. Dimoulas, R. Scholz, Materials Science and Engineering B 109, 39 (2004)
    [9] H. J. Osten, J. P. Liu, E. Bugiel, H. J. Mussig, P. Zaumeil, Mater. Sci. Eng. B 87, 297 (2001)
    [10] V. Narayanan, S. Guha, N.A. Bojarczuk, F.M. Ross, J. Appl. Phys. 93, 251 (2003)
    [11] H. Ishiwara and T. Asano, Appl. Phys. Lett. 40, 66 (1982)
    [12] D. A. Muller, T. Sorsch, S. Moccio, F. H. Baumann, and G. Timp, Nature (London) 399, 758 (1999)
    [13] J. B. Neaton, D. A. Muller, and N. W. Ashcroft, Phys. Rew. Lett. 85, 1298 (2000)
    [14] G. Apostolopoulos, G. Velliantis, A. Dimoulas, M. Alexe, R. Scholz, M. Fanciulli, D. T. Dekadjevi and C. Wiemer, Appl. Phys. Lett. 81, 3549 (2002)
    [15] J. Kwo, M. Hong, A. R. Kortan, K. L. Queeney, Y. J. Chabal, J. P. Mannaerts, T. Boone, J. J. Krajewski, A. M. Sergnt and J. M. Rosamilia, Appl. Phys. Lett. 77, 130 (2000)
    [16] J. Kwo, M. Hong, A. R. Kortan, K. L. Queeney, Y. J. Chabal, R. L. Opila. Jr., D. A. Muller, S. N. G. Chu, B. J. Sapjeta, T. S. Lay, J. P. Mannaerts, T. Boone, H. W. Krautter, J. J. Krajewski, A. M. Sergnt and J. M. Rosamilia, J. Appl. Phys. 89, 3920 (2001)
    [17] M. Hong, J. Kwo, A. R. Kortan, J. P. Mannaerts, and A. M. Sergent, Science 283, 1897 (1999)
    [18] M. Hong, A. R. Kortan, P. Chang, Y. L. Huang, C. P. Chen, H. Y. Chou, H. Y. Lee, J. Kwo, M.-W. Chu, C. H. Chen, L. V. Goncharova, E. Garfunkel and T. Gustafsson, Appl. Phys. Lett. 87, 251902 (2005)
    [19] S. Y. Wu, M. Hong, A. R. Kortan, J. Kwo, J. P. Mannaerts, W. C. Lee and Y. L. Huang, Appl. Phys. Lett. 87, 091908 (2005)
    [20] T. Schroeder, T.-L. Lee, J. Zegenhagen, C. Wenger, P. Zaumseil and H.-J. Mussig, Appl. Phys. Lett. 85, 1229 (2004)
    [21] R. A. McKee, F. J. Walker, and M. F. Chisholm, Science 293, 468 (2001)
    [22] T. Schroeder, T.-L. Lee, L. Libralesso, I. Joumard, J. Zegenhagen, P. Zaumseil, C. Wenger, G. Lupina, G. Lippert, J. Dabrowski and H.-J. Mussig, J. Appl. Phys. 97, 074906 (2005)
    [23] David C. Paine, T. Whitson, D. Janiac, R. Beresford, Cleva Ow Yang and Brian Lewis, J. Appl. Phys. 85, 8445 (1999)
    [24] Y. Guyot, R. Moncorge, L. D. Merkle, A. Pinto, B. McIntosh, H. Verdun, Opt. Mater. 5, 127 (1996)
    [25] H. Fukumoto, T. Imura, and T. Osaka, Appl. Phys. Lett. 55, 360 (1989)
    [26] I. Barin, Thermochemical Data of Pure Substances (VCH Verlagsgesellschaft, Weinheim, Germany, 1989)
    [27] M.-H. Cho, D.-H. Ko, Y. K. Choi, I. W. Lyo, K. Jeong and C. N. Whang, Thin Solid Film 402, 38 (2002)
    [28] Kosuke Kakuno, Daisuke Ito, Norifumi Fujimura, Toshiyuki Matsui, Taichiro Ito, J. Cryst. Growth 237, 487 (2002)
    [29] Claudine Noguera, J. Phys.: Condens. Matter 12, R367 (2000)
    [30] Tasker P W, J. Phys. C: Solid state Phys. 12, 2977 (1979)
    [31] P. Zaumseil and T. Schroeder, J. Phys. D 38, A138 (2005)
    [32] M. E. Hunter, M. J. Reed, N. A. El-Masry, J. C. Roberts and S. M. Bedair, Appl. Phys. Lett. 76, 1935 (2000)
    [33] M.-H. Cho, D.-H. Ko, Y. K. Choi, I. W. Lyo, K. Jeong, C. N. Whang, H. J. Kim and D. Y. Noh, J. Vac. Sci. Technol. A 19(1), 200 (2001)
    [34] M. A. Herman, H. Sitter, Molecular Beam Epitaxy- Fundamentals and Current Status, Springer-Verlag Berlin Heidelberg 1989
    [35] S.M. Sze, Semiconductor Devices: Physics and Technology, Second Edition, Wiley (2001)
    [36] John C. Vickerman, Surface Analysis The Principal Techniques, Wiley (2003)
    [37] D. Keith Bowen and Brian K. Tanner, High Resolution X-ray Diffractometry and Topography, Taylor & Francis (2002)
    [38] M. J. Bentall, R. A. Cowley, R. C. C. Ward, M. R. Wells and A. Stunault, J. Phys.: Condens. Matter 15, 7155 (2003)
    [39] M. Birkholz, Thin Film Analysis by X-ray Scattering, Wiley (2006)
    [40] Feng Huang, X-ray Reflectivity Studies on Thin Films (2005)
    [41] B. D. Cullity and S. R. Stock, Elements of X-ray Diffraction, Third Edition (2001)
    [42] J. C. Ziegler, G. Scherb, O. Bunk, A. Kazimirov, L. X. Cao, D. M. Kolb, R. L. Johnson, J. Zegenhagen, Surface Science 452, 150 (2000)
    [43] Azaroff L V, Kaplow R, Kato N, Weiss R J, Wilson A J C and Young R A, X-ray Diffraction (International Series in Pure and Applied Physics) (New York: Wiley), 1974
    [44] Babkevich A Yu, Cowley R A, Mason N J, Sandiford S and Stunault A, J. Phys.: Condens. Matter 14, 7101 (2002)
    [45] M. Hong, M. Passlack, J. P. Mannaerts, J. Kwo, S. N. G. Chu, N. Moriya, S. Y. Hou and V. J. Fratello, J. Vac. Sci. Technol. B 14, 2297 (1996)
    [46] J. F. van der Veen, Surf. Sci. Rep. 5, 199 (1985)
    [47]B. W. Busch, W. H. Schulte, E. Garfunkel, T. Gastafsson, W. Qi, R. Nieh and J. Lee, Phys. Rev. B 62, R13290 (2000)
    [48] A. R. Kortan, M. Hong, J. Kwo, J. P. Mannaerts, and N. Kopylov, Phys. Rev. B 60, 10913 (1999)
    [49] Babkevich A Yu, Cowley R A, Mason N J and Stunault A, J. Phys.: Condens. Matter 4747 (2000)
    [50] P. F. Miceli, C. J. Palmstrom, Phys. Rew. B 51, 5506 (1995)
    [51] R. T. Tung, J. C. Bean, J. M. Gibson, J. M. Poate, and D. C. Jacobson, Appl. Phys. Lett. 40, 684 (1982)
    [52] L. Tye, T. Chikyow, N. A. El-Masry and S. M. Bedair, Mater. Res. Soc. Symp. Proc. 341, 551 (1994)
    [53] P. Zaumseil and T. Schroeder, J. Phys. D: Appl. Phys. 38 A179 (2005)
    [54] B. W. Busch, J. Kwo, M. Hong, J. P. Mannaerts, B. J. Sapjeta, W. H. Schulte, E. Garfunkel and T. Gustafsson, Appl. Phys. Lett. 79, 2447 (2001)
    [55] M. L. Green, E. P. Gusev, R. Degraeve, and E. L. Garfunkel, J. Appl. Phys. 90, 2057 (2001)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE