研究生: |
黃昶閔 Chang-Min Huang |
---|---|
論文名稱: |
風險值之衡量與驗證-以台指選擇權為例 Applying the Value at Risk Method to Taiwan Stock Index Option |
指導教授: |
張國平
Kuo-Ping Chang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
科技管理學院 - 科技管理研究所 Institute of Technology Management |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 47 |
中文關鍵詞: | 一般柏瑞圖分配 、門檻值 、極值理論 |
外文關鍵詞: | Generalized Pareto distribution, threshold, Extreme value theory |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
衍生性商品蓬勃發展,金融市場上重大事件頻傳,使得企業更注重風險控管。風險值 (Value-at-Risk)模型由於其觀念簡單與計算容易的優點而被市場普遍接受,在不同的假設與估計方式下,衍生出了各式各樣的風險值模型,但風險值的估計除須具備準確性之外,還必須考慮到資金使用之效率。本研究除了採用常用的變異數-共變異數法以及在文獻中實證績效不錯的歷史模擬法,配合Efron(1993)之拔靴複製法來建製樣本資料,另外考慮由於衍生性金融商品高槓桿的特性,容易造成損失擴大,因此採用近來新興的極值理論 (EVT)等三種風險預測模型來估計風險值,其中運用Danielssion & de Vries(1997)之門檻值選取方式來選取門檻值,並用一般化柏瑞圖分配來描述超過門檻值之尾端樣本分配。實證結果顯示,變異數-共變異數法的估計準確度有待加強,而歷史模擬法在總括來看,是所有模型中最準確的,但在價外買權情況下,其表現較其他模型稍遜。至於極值理論雖然表現較歷史模擬法稍遜,但其在極端事件發生之下,能夠確實估計。
Empirical evidence rejects the assumption that the distribution is normal and suggests that the distribution of financial asset returns be heavy-tailed. We compare the performance of extreme value theory in VaR calculations with that of other well-known modeling techniques, such as variance-covariance method and historical simulation. Using GARCH(1,1), EWMA and historical volatility to estimate the volatility. In extreme value method, we choose the peaks over thresholds to derive a natural model for the point process of large losses exceeding a high threshold. Moreover, we use the generalized Pareto distribution (GPD) to describe the samples which exceeding threshold. We provide the historical simulation is the most useful VaR forecast model. But in the extreme things, EVT is better than historical simulation.
參考文獻
一、中文部分
林柏青,「跳躍模型之風險值估計」,淡江大學財務金融學系,未出版碩士論文,民國九十三年
周恆志、陳勝源,「漲跌幅限制與極值理論在期貨保證金設定上之應用」,風險管理學報,第六卷,第二期,民國九十三年
施勇任,「選擇權之風險值的計算方法探討」,東吳大學商用數學系,未出版碩士論文,民國九十一年
張貿易,「金融商品投資風險評估之研究-以VaR模型之歷史模擬法為主」,中原大學會計學系,未出版碩士論文,民國九十二年
陳俊宏,「非齊質變異下尾端風險的衡量」,政治大學貿易學系,未出版碩士論文,民國九十一年
陳怡君,「極端值理論在風險值上的應用」,政治大學統計研究所,未出版碩士論文,民國九十一年
魏輝娥,「最適尾端參數估計之探討:台灣股票報酬風險值之應用」,中正大學經濟學系,未出版碩士論文,民國九十二年
二、外國部分
Alexander C.O. and Leigh C.T., (1997). On the Covariance Matrices Used in Value at Risk Models. Journal of Derivatives, Vol.4, pp.50-62.
Bali, T.G., (2003). An Extreme Value Approach to Estimating Volatility and Value at Risk. Journal of Bussiness, Vol.76, pp.83-108.
Bakaert, G.E, Campbell Harvey, Claude B. Erb, and Tadas E. Viskanta, (1998). Distributed Characteristics of Emerging Market Returns and Asset Allocation, Journal of Portfolio Management, Vol.24, pp.102-116.
Beder, T.S.., (1995). VaR:Seductive but Dangerous, Financial Analysis Journal, Vol.51,pp.7-49.
Bollerslev T., (1986). Generalized Autoregressive conditional heteroskedasticity. Journal of Econometric, Vol.31, pp.307-327.
Bradley B.O. and Taqqu M.S., (2001). Financial Risk and Heavy Tails. Working paper, Boston University
Danielsson, J., and C. G. de Vries, (2000). Value-at-Risk and Extreme Returns , Extremes and Integrated Risk Management. Risk Books,85-106.
Danielsson, J., and C. G. de Vries, (1997). Tail index and quantile estimation with high frequency data. Journal of Empirical Finance, Vol. 4, pp.241-257.
Efron, B., Tibshirani, R., (1993). An Introduction to the Bootstrap. Chapman and Hall, New York.
El-Jahel L., W. Perraudin and P. Sellin, (1999). Value at Risk for Derivatives., Journal of Derivatives, Vol.6, pp.73-89.
Eric F., (1997). Value at Risk and Derivatives Risk. Derivatives Quarterly, Vol.4, No.1.
Gençay, R., Selçuk F., Ulugülyagci A., (2003). High volatility, thick tails and extreme value theory in Value-at-Risk estimation. Mathematics & Economics, 33,
Goorbergh, R.V.D and Vlaar p., (1999). Value-at-risk Analysis of Stock Returns Historical Simulation, Variance Technique or Tail Index Estimation. Working paper, Tilburg University.
Hendricks, D., (1996). Evaluation of Value-at-Risk Models Using Historical Data. Economic policy review, April, Federal Reserve Bank of New York Economic Policy Review,2.
John, M. and Thomas, H. (2004). News Arrival, Jump Dynamics, and Volatility Components for Individual Stock Returns. Journal of Finance, Vol. LIX, No.2
Jorion, P., (2000). Value at Risk: The New Benchmark for Managing Financial Risk.
Jorion, P., (1997). Value at Risk: The New Benchmark for Controlling Derivatives Risk, Working paper, Chicago University.
Kupiec P. H., (1995). Techniques for Verifying the Accuracy of Risk Measurement Model. Journal of Derivatives, Vol. 2, pp.73-84.
Longin, F. M., (2000). From Value at Risk to Stress Testing:The Extreme Value Approach. Journal of Banking & Finance,24,1097-1130.
McNeil, A.J., (1997). Estimating the Tails of Loss Severity Distributions Using Extreme Value Theory, ASTIN Bulletin 27, pp.117-137.
McNeil, A.J. and Thomas S., (1997). The Peaks over Thresholds Method for Estimating High Quantiles of Loss Distributions.
McNeil, A.J. and Thomas S., (1998). Developing Scenarios for Future Extreme Losses Using the POT Model. Working paper, Swiss Federal Technical University.
McNeil, A.J. and Frey, R., (2000). Estimation of Tail-Related Risk Measures for Heteroscedastic Financial Time Series: An Extreme Value Approach. Journal of Empirical Finance, Vol 7, pp.271-300.
Jackson P., Maude D.J. and Perraudin W., (1997). Bank Capital and Value at Risk. Journal of Derivatives, 4, pp.73-88.
Pickands, J., (1975). Statistical Inference Using Extreme Order Statistics. The Annals of Statistics 3, pp.119-131.
Smith, R., (1987). Estimating Tails of Probability Distribution, The Annals of Statistics 15, pp.1174-1207.