研究生: |
萬寶輝 Wan, Pao Hui |
---|---|
論文名稱: |
耗散粒子動力學模擬兩親性雙嵌段共聚物共混均聚物於選擇性溶劑下之形態變化 Dissipative Particle Dynamics Study on Morphology Transitions of Amphiphilic Diblock Copolymer/Homopolymer Blends in selective solvents |
指導教授: |
張榮語
Chang, Rong Yeu |
口試委員: |
朱一民
吳建興 黃招財 曾煥錩 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 71 |
中文關鍵詞: | 耗散粒子動力學 、雙嵌段共聚物 、選擇性溶劑 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要是利用耗散粒子動力學,模擬兩親性雙嵌段共聚物共混均聚物於選擇性溶劑中的自組裝行為。探討改變高分子的濃度、均聚物的鏈長及選擇性溶劑的性質對平衡形態的影響。
根據研究結果顯示,改變嵌段共聚物的疏溶劑端與溶劑之間的Flory-Huggins交互作用參數(χsolvophobic-solvent,χbs)或是高分子濃度會使自組裝的奈米微結構產生不同的形態,例如:漢堡狀、球形、多室蟲狀微胞。
固定濃度下改變χbs,當共混較短的均聚物,均聚物會分佈在A嵌段(solvophobic)之間,造成A嵌段較為延伸,而共混較長的均聚物時,均聚物會分佈在微胞中間而壓縮A嵌段,造成A嵌段的末端-末端距離較短,而B嵌段(solvophilic)的末端-末端距離則是隨著χbs的增加而下降並且不太會受到均聚物的影響。
微胞大小也會隨著χbs而改變,當χbs上升,微胞尺寸會縮小,這是因為系統會藉由縮小微胞的尺寸,使總介面能量最小化。
藉由調整嵌段共聚物的鏈長可以控制多室蟲狀微胞的包覆,當系統中A粒子的比例介於0.55至0.6之間,提高A嵌段的長度可以較完整的包覆均聚物,而大於或小於此比例皆無法形成多室蟲狀微胞。
The self-assembly of diblock copolymers/homopolymer blend in selective solvent was simulated by Dissipative particle dynamics simulation in this research. We investigated the effect of the polymer concentration, homopolymers length and the selective solvent properties on morphology transition.
It is found that self-assembled nanostructures of different shapes (e.g., hamburger-like, sphere, multicompartment worm-like micelles) can be obtained by varying the Flory-Huggins interaction parameter between the solvophobic block and the solvent (χsolvophobic-solvent,χbs) and concentration of the polymer.
When blending short chain homopolymers, it will distribute over A domain causing block copolymer A more extended. Comparing with the short chain, long chain homopolymers prefer to gather in the center of the micelle and compress block copolymer A. End to end distance of the block copolymer B is decreased with increasing χbs.
Micellar size is also sensitive to the solvent property, which decreases with an increase of interactionsχbs, since system minimizes the total interfacial energy by compressing micellar size.
By increasing the length of the block copolymer A can cover homopolymers more effectively in the multicompartment worm-like micelles when the fraction of the particle A is between 0.55 and 0.6.
1. Hamley, Ian W. "Introduction to block copolymers." Developments in block copolymer science and technology (2004): 1-29.
2. Mogi, Yasuhiro, et al. "Superlattice structures in morphologies of the ABC triblock copolymers." Macromolecules 27.23 (1994): 6755-6760.
3. Luo, Zhonglin, and Jianwen Jiang. "Molecular dynamics and dissipative particle dynamics simulations for the miscibility of poly (ethylene oxide)/poly (vinyl chloride) blends." Polymer 51.1 (2010): 291-299.
4. Qian, Hu-Jun, et al. "Dissipative particle dynamics study on the interfaces in incompatible A∕ B homopolymer blends and with their block copolymers." The Journal of chemical physics 122.18 (2005): 184907.
5. Yen, L.C., Morphological Transition of Side Chain Functionalized Group Copolymer Blend with Homopolymer via Dissipative Particle Dynamics Simulation. 2010.
6. Tanaka, Hideaki, Hirokazu Hasegawa, and Takeji Hashimoto. "Ordered structure in mixtures of a block copolymer and homopolymers. 1. Solubilization of low molecular weight homopolymers." Macromolecules 24.1 (1991): 240-251.
7. Matsen, M. W. "Phase behavior of block copolymer/homopolymer blends."Macromolecules 28.17 (1995): 5765-5773.
8. Dikobe, D. G., and A. S. Luyt. "Morphology and properties of polypropylene/ethylene vinyl acetate copolymer/wood powder blend composites." polymer 5 (2006): 7.
9. Padmanabhan, Poornima, et al. "A theoretical and simulation study of the self-assembly of a binary blend of diblock copolymers." The Journal of chemical physics 136.23 (2012): 234905.
10. Wang, Jia-Jun, et al. "A dissipative particle dynamics study on the compatibilizing process of immiscible polymer blends with graft copolymers."Polymer 53.20 (2012): 4448-4454.
11. Chen, Hongtao, et al. "Release of hydrophobic molecules from polymer micelles into cell membranes revealed by Förster resonance energy transfer imaging."Proceedings of the National Academy of Sciences 105.18 (2008): 6596-6601.
12. Shand, F. "Polymer membranes with molecular-sized channels that assemble themselves." Magazine [Online article], Available: http://www. nanomagazine. co. uk/index. php.
13. Hoogerbrugge, P. J., and J. M. V. A. Koelman. "Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics." EPL (Europhysics Letters) 19.3 (1992): 155.
14. Espanol, Pep, and Patrick Warren. "Statistical mechanics of dissipative particle dynamics." EPL (Europhysics Letters) 30.4 (1995): 191.
15. Groot, Robert D., and Patrick B. Warren. "Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation." Journal of Chemical Physics 107.11 (1997): 4423.
16. Groot, Robert D., and Timothy J. Madden. "Dynamic simulation of diblock copolymer microphase separation." The Journal of chemical physics 108.20 (1998): 8713-8724.
17. Kinning, David J., Karen I. Winey, and Edwin L. Thomas. "Structural transitions from spherical to nonspherical micelles in blends of poly (styrene-butadiene) diblock copolymer and polystyrene homopolymers." Macromolecules 21.12 (1988): 3502-3506.
18. Hashimoto, Takeji, Hideaki Tanaka, and Hirokazu Hasegawa. "Ordered structure in mixtures of a block copolymer and homopolymers. 2. Effects of molecular weights of homopolymers." Macromolecules 23.20 (1990): 4378-4386.
19. Tanaka, Hideaki, and Takeji Hashimoto. "Ordered structures of block polymer/homopolymer mixtures. 3. Temperature dependence." Macromolecules24.20 (1991): 5713-5720.
20. Qian, Hu-Jun, et al. "Dissipative particle dynamics study on the interfaces in incompatible A ∕ B homopolymer blends and with their block copolymers." The Journal of chemical physics 122.18 (2005): 184907.
21. Lee, Wen-Jay, et al. "Modeling of polyethylene and poly (L-lactide) polymer blends and diblock copolymer: Chain length and volume fraction effects on structural arrangement." The Journal of chemical physics 127.6 (2007): 064902.
22. Zhao, Ying, et al. "Dissipative particle dynamics study on the multicompartment micelles self-assembled from the mixture of diblock copolymer poly (ethyl ethylene)-block-poly (ethylene oxide) and homopolymer poly (propylene oxide) in aqueous solution." Polymer 50.22 (2009): 5333-5340.
23. Uneyama, Takashi. "Density functional simulation of spontaneous formation of vesicle in block copolymer solutions." The Journal of chemical physics 126.11 (2007): 114902.
24. Di Cola, Emanuela, et al. "Micellar transformations of poly (styrene-b-isoprene) block copolymers in selective solvents." Soft Matter 5.5 (2009): 1081-1090
25. Xu, Guang-Kui, Xi-Qiao Feng, and Yue Li. "Self-assembled nanostructures of homopolymer and diblock copolymer blends in a selective solvent." The Journal of Physical Chemistry B 114.3 (2010): 1257-1263.
26. Chen, Zenglei, et al. "Vesicles from the self-assembly of coil–rod–coil triblock copolymers in selective solvents." Polymer 55.12 (2014): 2921-2927.
27. Li, Zhibo, Marc A. Hillmyer, and Timothy P. Lodge. "Morphologies of multicompartment micelles formed by ABC miktoarm star terpolymers."Langmuir 22.22 (2006): 9409-9417.
28. Chen, Nan, Li-Tang Yan, and Xu-Ming Xie. "Interplay between Crystallization and Phase Separation in PS-b-PMMA/PEO Blends: The Effect of Confinement."Macromolecules 46.9 (2013): 3544-3553.
29. Lutz, Jean‐François, and André Laschewsky. "Multicompartment Micelles: Has the Long‐Standing Dream Become a Reality?." Macromolecular Chemistry and Physics 206.8 (2005): 813-817.
30. Khanna, Kunal, Sunil Varshney, and Ashok Kakkar. "Miktoarm star polymers: advances in synthesis, self-assembly, and applications." Polymer Chemistry1.8 (2010): 1171-1185.
31. Zhang, Jing, Zhong-Yuan Lu, and Zhao-Yan Sun. "Self-assembly structures of amphiphilic multiblock copolymer in dilute solution." Soft Matter 9.6 (2013): 1947-1954.
32. Zhao, Ying, et al. "Effect of molecular architecture on the morphology diversity of the multicompartment micelles: A dissipative particle dynamics simulation study." Polymer 49.22 (2008): 4899-4909.
33. Lodge, Timothy P., et al. "Simultaneous, segregated storage of two agents in a multicompartment micelle." Journal of the American Chemical Society 127.50 (2005): 17608-17609.
34. 梁育誠 "耗散粒子動力學模擬雙嵌段共聚物共混單團鏈共聚物於不同狀態下之行為探討" 國立清華大學碩士論文(2014)