簡易檢索 / 詳目顯示

研究生: 張哲榮
CHANG, CHE-JUNG
論文名稱: 氫氣濃度對壓水式反應器一次側中不鏽鋼與鎳基合金之應力腐蝕龜裂起始研究
Effect of Dissolved Hydrogen on the SCC initiation of Stainless steel and Ni-based Alloy in Simulated PWR primary water Environments
指導教授: 葉宗洸
YEH, TSUNG-KWUNG
口試委員: 王美雅
Wang, Mei-Ya
馮克林
FONG, Ke-Lin
黃俊源
Huang, Jyun Yuan
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 102
中文關鍵詞: 應力腐蝕龜裂起始壓水式反應器沃斯田系不鏽鋼鎳基合金
外文關鍵詞: SCC, PWR, Stainless Steel, Ni Alloy
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著核電廠運轉時間的增加,在輕水式反應器(Light Water Reactor, LWR)漸發現有應
    力腐蝕龜裂(Intergranular Stress Corrosion Cracking, IGSCC)的問題。針對溶氫濃度對於
    組件腐蝕防治的效益仍需更多研究的基礎討論。而組件的劣化不僅會影響運轉安全亦
    所費不貲。我國核三廠兩部機組為壓水式反應器,在其結構組件中,主要使用的是沃斯田
    系不鏽鋼與鎳基合金。
    本實驗研究鎳基合金與沃斯田系不鏽鋼材料的應力腐蝕龜裂行為,探討沃斯田系
    不鏽鋼316、鎳基合金 600 與 X750,組件材料在壓水式反應器的水化學環境下,調整不
    同溶氫濃度(0、0.45、2.58 ppm),對於防治應力腐蝕劣化效益的測試評估。腐蝕行為
    研究以 U-bend 應力腐蝕試驗進行。試片測試後採用 SEM 觀察材料的表面,觀察表面
    產生 crack 的分布情形及其裂縫長度、數目等。
    結果顯示,DH 0 ppm 下之316 不鏽鋼經敏化處理後腐蝕較為嚴重,表面有較常與
    較多之裂縫,氫氣的注入後對於316 不鏽鋼與鎳基600 合金之裂縫總數變化有降低的作
    用,但整體而言對X750 而言數目影響不明顯。


    As the operation time of nuclear power plants increases, the phenomenon of Intergranular
    Stress Corrosion Cracking (IGSCC) is readily found in Light Water Reactor (LWR). Further
    research is needed for the benefits of dissolved hydrogen concentration on component
    corrosion prevention. The deterioration of components not only affects the safety of operation
    but also costs. In Taiwan, Maanshan Nuclear Power Plant contains two units of Pressurized
    Water Reactors (PWRs). For the structural components, the stainless steel and nickel-based
    alloys are mainly used.
    This experiment aimed to investigate the stress corrosion cracking behavior of different
    heat-treated nickel-based alloys and stainless-steel materials, and to discuss their corrosion
    behavior under the simulated environment of primary water of a pressurized water reactor.
    Corrosion behavior studies were conducted by using the U-bend stress corrosion test under
    different dissolved hydrogen concentration (0, 0.45, 2.58 ppm). After the test piece was tested,
    the surface of the material was observed by SEM, and the distribution of cracks on the surface
    and the length and number of cracks were observed.
    The results showed that the sensitized 316 stainless steel tested at DH 0 ppm suffered the
    most severe corrosion attack, and there were more and longer cracks on it. After the injection
    of hydrogen, the trend of the total number of cracks for 316 stainless steel and nickel-based
    600 alloy were changed. However, the effect of hydrogen injection on X750 series was
    relatively insignificant.

    摘要 .......................................................................................................................................................................... I 目錄 ......................................................................................................................................................................... V 圖目錄 ................................................................................................................................................................ VIII 表目錄 ................................................................................................................................................................... XI 第1 章 緒論 ..................................................................................................................................................... 12 1.1. 前言 ..................................................................................................................................................... 12 1.2. 研究動機 ............................................................................................................................................. 13 第2 章 文獻回顧 ............................................................................................................................................. 15 2.1. 不鏽鋼與鎳基合金之冶金特性 ......................................................................................................... 15 2.1.1. 敏感性材料 .................................................................................................................................... 16 316 不鏽鋼 ............................................................................................................................................ 16 鎳基600 合金 ....................................................................................................................................... 18 鎳基X750 超合金 ................................................................................................................................ 20 2.2. 應力腐蝕龜裂 ..................................................................................................................................... 21 2.2.1. 壓水式反應器一次側水化學 ........................................................................................................ 21 2.2.2. 應力腐蝕龜裂之階段 .................................................................................................................... 22 2.2.3. 溫度的影響 .................................................................................................................................... 23 2.2.4. 酸鹼度與溶氫量/電位的影響 ....................................................................................................... 27 2.2.5. 合金元素的影響 ............................................................................................................................ 30 2.2.6. 冷加工的影響 ................................................................................................................................ 34 2.2.7. 材料微結構的影響 ........................................................................................................................ 37 2.2.8. 劣化機制 ........................................................................................................................................ 44 化學活路(Active path) ................................................................................................................... 44 滑移溶解機制(Slip-Dissolution) ..................................................................................................... 44 促進表面遷移理論 (Enhanced Surface Mobility Theory) .................................................................. 45 氫脆(Hydrogen embrittlement) ....................................................................................................... 47 第3 章 實驗設備及步驟 ................................................................................................................................. 49 3.1. 實驗方法及流程 ................................................................................................................................. 49 3.2. 實驗試片設計與備制 ......................................................................................................................... 51 3.3. 實驗設備 ............................................................................................................................................. 53 3.3.1. U-bend 之夾具與製具 ................................................................................................................... 53 3.3.2. 高溫高壓模擬壓水反應器一次側水循環 .................................................................................... 54 vi 3.4. 實驗分析方法與工具 ......................................................................................................................... 56 3.4.1. 敏化程度測試-雙環電位再活化法(DLEPR) ................................................................................ 56 3.4.2. 表面分析-光學顯微鏡(OM)、掃描試電子顯微鏡(SEM) ............................................................ 58 3.4.3. 連圖影像之定量分析 .................................................................................................................... 60 3.4.4. 成份分析-能量分散式光譜儀(EDS)、輝光放電分光儀(GDS)、碳硫分析儀 ........................... 61 第4 章 結果與討論 ......................................................................................................................................... 62 4.1. 敏化程度測試程度結果 ..................................................................................................................... 62 4.2. 材料之金相觀察 ................................................................................................................................. 63 4.3. 不同材料之表面形貌 ......................................................................................................................... 65 4.3.1. SS 316 不鏽鋼 ................................................................................................................................ 66 DH 0 ppm .............................................................................................................................................. 68 DH 0.45 ppm ......................................................................................................................................... 69 DH 2.68 ppm ......................................................................................................................................... 71 4.3.2. 鎳基600 合金 ................................................................................................................................ 73 DH 0 ppm .............................................................................................................................................. 73 DH 0.45 ppm ......................................................................................................................................... 75 DH 2.68 ppm ......................................................................................................................................... 76 4.3.3. 鎳基X750 合金 .............................................................................................................................. 77 DH 0 ppm .............................................................................................................................................. 78 DH 0.45 ppm ......................................................................................................................................... 80 DH 2.68 ppm ......................................................................................................................................... 81 4.4. 裂縫之定量分析 ................................................................................................................................. 83 4.4.1. SS 316 ............................................................................................................................................. 83 DH 0 ppm .............................................................................................................................................. 83 DH 0.45 ppm ......................................................................................................................................... 84 DH 2.68 ppm ......................................................................................................................................... 85 不同熱處理之SS 316 在不同溶氫濃度下之裂縫總數比較 ............................................................. 86 4.4.2. Alloy 600 ......................................................................................................................................... 87 DH 0 ppm .............................................................................................................................................. 87 DH 0.45 ppm ......................................................................................................................................... 88 DH 2.68 ppm ......................................................................................................................................... 89 不同熱處理之Alloy 600 在不同溶氫濃度下之裂縫總數比較 ......................................................... 90 4.4.3. X750 ................................................................................................................................................ 91 DH 0 ppm .............................................................................................................................................. 91 DH 0.45 ppm ......................................................................................................................................... 92 DH 2.68 ppm ......................................................................................................................................... 93 不同熱處理之X750 在不同溶氫濃度下之裂縫總數比較 ................................................................ 94 vii 第5 章 結論 ..................................................................................................................................................... 95 參考資料 ................................................................................................................................................................ 96

    [1] T. Root, J. Price, K. Hall, S. H Schneider, C. Rosenzweig, and A. Pounds, “Fingerprints
    of global warming on wild animals and plants,” Nature, vol. 421, pp. 57–60, 2003.
    [2] M. Dyurgerov and M. F Meier, “Glaciers and the Changing Earth System: A 2004
    Snapshot,” vol. 58, 2004.
    [3] S. Taskaev and V. V Kanygin, Boron Neutron Capture Therapy. 2016.
    [4] R. C. Wiens, “EVIDENCE FOR AN ANCIENT EARTH Radiometric Dating - A
    Christian Perspective Radiometeric Dating Does Work ,” 2002.
    [5] M. B. Toloczko, M. J. Olszta, Z. Zhai, and S. M. Bruemmer, “Stress Corrosion Crack
    Initiation Measurements of Alloy 600 in PWR Primary Water,” 17th Int. Conf. Environ.
    Degrad. Mater. Nucl. Power Sytems - Water React., pp. 1–20, 2015.
    [6] R. Ghafouri-Azar and S. S. Ho, “Analysis of Corrosion Fatigue for the Deaerator Heater
    Tanks in Nuclear Power Plants,” in American Society of Mechanical Engineers, Pressure
    Vessels and Piping Division (Publication) PVP, 2008, vol. 3.
    [7] P. Skeldon, P. M. Scott, and P. Hurst, “Environmentally assisted cracking of alloy X-
    750 in simulated PWR coolant,” Corrosion, vol. 48, no. 7, pp. 553–569, 1992.
    [8] G. Furutani, N. Nakajima, T. Konishi, and M. Kodama, “Stress corrosion cracking on
    irradiated 316 stainless steel,” J. Nucl. Mater., vol. 288, no. 2–3, pp. 179–186, 2001.
    [9] X. Zhong, S. C. Bali, and T. Shoji, “Effects of Dissolved Hydrogen on the
    Environmentally Assisted Cracking of 316 Stainless Steel in Pwr Primary Water At 325
    O C,” pp. 1–20, 2015.
    [10] L. Marchetti, F. Martin, F. Datcharry, and J. Chêne, “Kinetics of hydrogen permeation
    through a Ni-base alloy membrane exposed to primary medium of pressurized water
    reactors,” Corros. Sci., vol. 144, no. May, pp. 1–12, 2018.
    [11] T. Kim, K. J. Choi, S. C. Yoo, and J. H. Kim, “Effects of dissolved hydrogen on the
    crack-initiation and oxidation behavior of nickel-based alloys in high-temperature water,”
    Corros. Sci., vol. 106, pp. 260–270, 2016.
    [12] J. A. Roberts, “Structural materials in nuclear power systems,” Springer Sci. Bus. Media,
    2013.
    [13] I. K. R.W. Staehle, Anatomy of Proactivity, in: B.L. Eyre, “No Title,” in Int. Sym. on
    Research for Aging Management of Light Water Reactors and Its Future Trend (The
    15th Anniversary of INSS), 2008, pp. 29–115.
    [14] A. Martinez-Ubeda, I. Griffiths, M. Karunaratne, P. Flewitt, C. Younes, and T. Scott,
    “Influence of nominal composition variation on phase evolution and creep life of Type
    98
    316H austenitic stainless steel components,” Procedia Struct. Integr., vol. 2, pp. 958–
    965, 2016.
    [15] M. Michael, STAINLESS STEELSFOR DESIGN ENGINEERS. .
    [16] R. M. G.S. Was, H.H. Tischner, “The Influence of Thermal Treatment on the Chemistry
    and Structure of Grain Boundaries in Inconel 600,” LatanisionMetallurgical Trans., vol.
    A. 12, pp. 1397–1408, 1981.
    [17] G.S. Was, “Grain Boundary Chemistry and Intergranular Fracture in Austenitic Nickel-
    Base Alloys,” Mater. Sci. Forum, vol. 46, pp. 335–358., 1989.
    [18] J. R. SCARBERRY, R. C., PEARMAN, S. C., & CRUM, “Precipitation Reactions in
    Inconel Alloy 600 and Their Effect on Corrosion Behavior.,” Corrosion, vol. 32, no. 10,
    pp. 401–406, 1976.
    [19] A. K. Sinha and J. J. Moore, “Precipitation of M23C6 carbides in an aged Inconel X-
    750,” Metallography, vol. 19, no. 1, pp. 87–98, 1986.
    [20] W. Gwan, G. Yu, and J. Huang, “Study of Stress Corrosion Cracking of Alloy X-750
    Components in Nuclear Power Reactor,” vol. 14, no. 4, pp. 9–16, 2000.
    [21] R. Staehle, “Definition of precursors, incubation, slow growth and propagation of SCC,”
    SCC Initiat. Work., vol. 2, no. 3, pp. 79–87, 2008.
    [22] T. T. K Arioka, T Miyamoto, T Yamada, “Formation of crack embryos prior to crack
    growth in high temperature water,” in 14th International Conference on Environmental
    Degradation of Materials in Nuclear Power Systems Water Reactors, 2009, pp. 895–909.
    [23] T. M. K Arioka, T Yamada, T Terachi, “Temperature, potential and sensitization effects
    on intergranular crack growth and crack-tip appearance of cold worked 316,” in 13th
    International Conference on Environmental Degradation of Materials in Nuclear Power
    Systems, 2007, pp. 1–13.
    [24] S. F. H. Xu, “Laboratory Investigation of PWSCC of CRDM Nozzle 3 and Its J-Groove
    Weld on the Davis-Besse Reactor Vessel Head,” in Proc. 12th Int. Conf. on
    Environmental Degradation of Materials in Nuclear Power Plant.
    [25] G. A. Y. D.S. Morton, S.A. Attanasio, E. Richey, “n Search of the True Temperature and
    Stress Intensity Factor Dependencies for PWSCC,” in 12th Int. Conf. on Environmental
    Degradation of Materials in Nuclear Power Systems–Water Reactors, 2005, pp. 977–
    988.
    [26] F. W. P. G. Economy, R.J. Jacko, “IGSCC Behaviour of Alloy 600 Steam Generator
    Tubing in Water or Steam Tests above 360 °C,” Corrosion., vol. 43, pp. 727–734, 1987.
    [27] J. A. G. R.W. Staehle, “Quantitative Assessment of Submodes of Stress Corrosion
    Cracking on the Secondary Side of Steam Generator Tubing in Pressurized Water
    Reactors,” Corrosion, vol. 60, pp. 115–180, 2004.
    99
    [28] M. A. K. Arioka, T. Yamada, T. Miyamoto, “Intergranular Stress Corrosion Cracking
    Growth Behavior of Ni-Cr-Fe Alloys in Pressurized Water Reactor Primary Water,”
    Corrosion, vol. 70, pp. 695–707, 2014.
    [29] D. N. S. S.-I. Baik, M.J. Olszta, S.M. Bruemmer, “Grain-boundary structure and
    segregation behavior in a nickel-base stainless alloy,” Scr. Mater., vol. 66, pp. 809–812,
    2012.
    [30] J. W. P.L. Andresen, J. Hickling, A. Ahluwalia, “Effect of Dissolved Hydrogen on SCC
    of Ni Alloys and Weld Metals,” NACE Corros., 2009.
    [31] M. K. S. E. Richey, D.S. Morton, “SCC Initiation Testing of Nickel-Based Alloys Using
    In-Situ Monitored Uniaxial Tensile Specimens,” in , Proc. 12th Int. Conf. on
    Environmental Degradation of Materials in Nuclear Power Plant.
    [32] P.M. Scott, “An Overview of Internal Oxidation as a Possible Explanation of
    Intergranular Stress Corrosion Cracking of Alloy 600 in PWRSProc. 9th Int. Conf. on
    Environmental Degradation of Materials in Nucle,” in Proc. 9th Int. Conf. on
    Environmental Degradation of Materials in Nuclear Power Plant.
    [33] T. M. A. D.S. Morton, S.A. Attanasio, G.A. Young, P.L. Andresen, “The Influence of
    Dissolved Hydrogen on Nickel Alloy SCC: A Window to Fundamental Insight,” NACE
    Corros., 2001.
    [34] N. Np-t-, “IAEA Nuclear Energy Series Stress Corrosion Cracking in Light Water
    Reactors : Good Practices and Lessons Learned,” Int. At. Energy Agency, 2011.
    [35] H. W. H. Coriou, L. Grall, P. Olivier, “Influence of Carbon and Nickel Content on Stress-
    Corrosion Cracking of Austenitic Stainless Alloys in Pure or Chloride Containing Water
    at 350 oC,” in n: R.W. Staehle (Ed.), Proc.of Conference of Fundamental As.
    [36] K. O. T. Yonezawa, “Effect of chemical compositions and microstructure on the stress
    corrosion cracking resistance of nickel-based alloys in high-temperature water.,” Proc.
    Int. Conf. Eval. Mater. Perform.
    [37] M. L. C. P.M. Scott, “Some Possible Mechanisms of Intergranular Stress Corrosion
    Cracking of Alloy 600 in PWR Primary Water,” in Proc. 6th Int. Conf. on Environmental
    Degradation of Materials in Nuclear Power Systems–Water Reactors.
    [38] P. M. P. Combrade, P.M. Scott, M. Foucault, E. Andrieu, “Oxidation of Ni Base Alloys
    in PWR Water: Oxide Layers and Associated Damage to the Base Metal,” in Proc. 12th
    Int. Conf. on Environmental Degradation of Materials in Nuclear Power Plant.
    [39] R. P. L. Fournier, O. Calonne, P. Combrade, P. Scott, P. Chou, “Grain boundary
    oxidation and embrittlement prior to crack initiation in Alloy 600 in PWR primary water,”
    in Proc. 15th Int. Conf. on Envir.
    100
    [40] P. M. S. R.C. Newman, T.S. Gendron, “Internal Oxidation and Embrittlement of Alloy
    600,” in Environmental Degradation of Materials in Nuclear Power Systems–Water
    Reactors, 1999, pp. 79–93.
    [41] F. Scenini, “The Effect of Surface Preparation on the Oxidation and SCC Behaviour of
    Alloy 600 and 690 in Hydrogenated Steam, Ph.D. Dissertation,” 2006.
    [42] R. J. J. F. Scenini, R.C. Newman, R.A. Cottis, “Effect of Surface Preparation on
    Intergranular Stress Corrosion Cracking of Alloy 600 in Hydrogenated Steam,”
    Corrosion, vol. 64, pp. 824–835, 2008.
    [43] W. K. Z. Zhang, J. Wang, E.-H. Han, “Analysis of Surface Oxide Films Formed in
    Hydrogenated Primary Water on Alloy 690TT Samples With Different Surface States,”
    J. Mater. Sci. Technol., vol. 30, pp. 1181–1192, 2014.
    [44] W. K. Z. Zhang, J. Wang, E.-H. Han, “Influence of dissolved oxygen on oxide films of
    Alloy 690TT with different surface status in simulated primary water,” Corrosion, vol.
    53, pp. 3623–2635, 2011.
    [45] D. V. R. Bandy, “Mechanisms of stress corrosion cracking and intergranular attack in
    alloy 600 in high temperature caustic and pure water,” J. Mater. Energy Syst., vol. 7, pp.
    237–245, 1985.
    [46] D.H. Hur, M.S. Choi, D.H. Lee, M.H. Song, S.J. Kim, J.H. Han, “Effect of shot peening
    on primary water stress corrosion cracking of Alloy 600 steam generator tubes in an
    operating PWR plant,” Nucl. Eng. Des., vol. 227, pp. 155–160, 2004.
    [47] S. Le Hong, “Influence of Surface Condition on Primary Water Stress Corrosion
    Cracking Initiation of Alloy 600,” Corrosion, vol. 57, pp. 323–333, 2001.
    [48] R. J. J. F. Scenini, R.C. Newman, R.A. Cottis, “Effect of Surface Preparation on
    Intergranular Stress Corrosion Cracking of Alloy 600 in Hydrogenated Steam,”
    Corrosion., vol. 64, pp. 824–835, 2008.
    [49] S. M. B. M.B. Toloczko, M.J. Olszta, “One Dimensional Cold Rolling Effects of Stress
    Corrosion Crack Growth in Alloy 690 Tubing and Plate Materials,” in Proc. 15th Int.
    Conf. on Environmental Degradation.
    [50] K. A. P.L. Andresen, M.M. Morra, “SCC of Alloy 690 and its Weld Metals,” in Proc.
    15th Int. Conf. on Environmental Degradation of Materials in Nuclear Power Systems–
    Water Reactors, 2011, pp. 161–176.
    [51] L. T. S. Bruemmer, M. Olszta, M. Toloczko, “High-Resolution Characterizations of
    Grain Boundary Damage and Stress Corrosion Crack Tips in Cold-Rolled Alloy 690,”
    in Proc. 15th Int. Conf. on Environmental Degradation of Materials in Nuclear Power
    Systems–Water Reactors, 2011, pp. 301–314.
    101
    [52] T. T. K. Arioka, T. Yamada, T. Miyamoto, “Dependence of Stress Corrosion Cracking
    of Alloy 690 on Temperature, Cold Work, and Carbide Precipitation - Role of Diffusion
    of Vacancies at Crack Tips,” Corrosion, vol. 67, pp. E1–E18, 2011.
    [53] and C. H. H. J. S. M. Bruemmer, L. A. Charlot, “Microstructure and microdeformation
    effects on IGSCC of Alloy 600 steam generator tubing.,” Corrosion, vol. 11, no. 44,
    1988.
    [54] R. W. S. and J. A. Gorman., “Quantitative assessment of submodes of stress corrosion
    cracking on the secondary side of steam generator tubing in pressurized water reactors.,”
    Corrosion, pp. 115–180, 2014.
    [55] G. P. Airey, “Microstructural aspects of the thermal treatment of Inconel alloy 600,”
    Metallography, vol. 13, pp. 21–41, 1980.
    [56] F. S. R.C. Newman, “Another Way to Think About the Critical Oxide Volume Fraction
    for the Internal-to-External Oxidation Transition,” Corrosion, vol. 64, pp. 721–726,
    2008.
    [57] J. R. M. G.S. Was, “The Influence of Grain Boundary Precipitation on the Measurement
    of Chromium Redistribution and Phosphorus Segregation in Ni-16Cr-9Fe,” Metall.
    Trans. A, vol. 16, pp. 349–359, 1985.
    [58] G. S. W. S.M. Bruemmer, “Microstructural and microchemical mechanisms controlling
    intergranular stress corrosion cracking in light-water-reactor systems,” J. Nucl. Mater.,
    vol. 216, pp. 348–363, 1994.
    [59] L. E. T. S.M. Bruemmer, M.J. Olszta, M.B. Toloczko, “Linking Grain Boundary
    Microstructure to Stress Corrosion Cracking of Cold-Rolled Alloy 690 in Pressurized
    Water Reactor Primary Water,” Corrosion, vol. 69, pp. 953–963., 2013.
    [60] N. S. T. Yonezawa, K. Onimura, N. Sakamoto, “Effect of heat teatment on SCC
    resistance of high Nickel alloys in high temperature water,” in Environmental
    Degradation of Materials in Nuclear Power Systems–Water Reactors.
    [61] T. K. and H. HANNINEN, “THE EFFECT OF HEAT TREATMENT ON THE
    MICROSTRUCTURE AND CORROSION RESISTANCE OF INCONEL X-750
    ALLOY,” Corros. Sci., vol. 25, pp. 789–803, 1985.
    [62] T. S. V.S. Raja, “Stress Corrosion Cracking: Theory and Practice,” in Elsevier Science, .
    [63] H. L. Logan, “Film-rupture mechanism of stress corrosion,” ,ournal Res. Natl. Bur.
    Stand., vol. 48, pp. 99–105., 1952.
    [64] R. W. Staehle, “Predicting failures in light water nuclear reactors which have not yet
    been observed- microprocess sequence approach ( MPSA ),” Environ. Crack. Mater.,
    vol. 2, pp. 3–53, 2008.
    102
    [65] F. P. F. P.L. Andresen, “Fundamental modeling of environmental cracking for improved
    design and lifetime evaluation in BWRs.,” Int. J. Press. Vessel. Piping., no. 59, pp. 61–
    70, 1994.
    [66] J. R. Galvele, “A stress corrosion cracking mechanism based on surface mobility,”
    Corros. Sci., vol. 27, pp. 1–33, 1987.
    [67] R. B. Rebak and Z. Szklarska-Smialowska, “The mechanism of stress corrosion cracking
    of alloy 600 in high temperature water,” Corros. Sci., vol. 38, no. 6, pp. 971–988, 1996.
    [68] J. R. G. S.B. Farina, G.S. Duffó, “Stress corrosion cracking of copper and silver, specific
    effect of the metal cations,” vol. 47, pp. 239–245, 2005.
    [69] H. K. Birnbaum, “Mechanical properties of metal hydrides,” J. Less-Common Met., vol.
    104, pp. 31–41, 1984.
    [70] P. S. H.K. Birnbaum, “Hydrogen-enhanced localized plasticity--a mechanism for
    hydrogen-related fracture,” Mater. Sci. Eng., vol. 76, pp. 191–202, 1994.
    [71] D. J. U. S.L. Lee, “A decohesion model of hydrogen assisted cracking,” Eng. Fract.
    Mech., vol. 31, pp. 647–660, 1988.
    [72] H. K. B. S. Gahr, M.L. Grossbeck, “Hydrogen embrittlement of Nb I—Macroscopic
    behavior at low temperatures,” Acta Metall., vol. 25, pp. 125–134, 1977.
    [73] S. E. S. Myers, M. Baskes, H. Birnbaum, J. Corbett, G. DeLeo, “Hydrogen interactions
    with defects in crystalline solids,” Rev. Mod. Phys., vol. 64, pp. 559–617, 1992.
    [74] B. Lawn, Fracture of Brittle Solids. 1993.
    [75] O. D. B. F. Foct, T. Magnin, “Stress corrosion cracking mechanisms of alloy 600
    polycrystals and single crystals in primary water—Influence of hydrogen,” Metall.
    Mater. Trans. A, vol. 31, pp. 2025–2036, 2000.
    [76] ASTM G-30, “Making and Using U-Bend Stress-Corrosion Test Specimens 1,” vol. 97,
    no. Reapproved 2003, pp. 1–7, 2008.
    [77] H. Agrawal, P. Sharma, P. Tiwari, R. V. Taiwade, and R. Dayal, “Evaluation of Self-
    Healing Behaviour of AISI 304 Stainless Steel,” Trans. Indian Inst. Met., vol. 68, 2015.
    [78] A. S. M. International and A. Rights, ASM specialty handbook: nickel, cobalt, and their
    alloys, vol. 38, no. 11. 2013.

    QR CODE