簡易檢索 / 詳目顯示

研究生: 許肇棠
Chao-Tang Hsu
論文名稱: 電纜終端因施工不當造成之絕緣缺陷的改善方法
Method to Mitigate Cable Insulation Defect Caused by Improper Terminal Fabrication Work
指導教授: 陳士麟
Shi-Lin Chen
潘晴財
Ching-Tsai Pan
顏世雄
Shi-Xiong Yan
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 85
中文關鍵詞: 冷縮式套管電纜終端新設計電纜終端結構抑低電場有限元素法
外文關鍵詞: cold-shrinking termination, cable terminal, new design, terminal structure, mitigate electric field, Finite Element Method
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文針對近年來國內較常發生的電纜終端接頭因人為施工不良所造成的事故進行研究,在不影響現行施工法的前提下,研擬可行的改善方法,降低電纜終端故障的可能性,除施工不良,亦對於製造及環境不良所造成的電纜終端事故作廣泛性的探討。
    本論文提出一套新的設計概念,乃在電纜終端添加半導電層,以抑制現行設計因施工不良所造成的非均勻電場,並以現有的冷縮式套管為例,將此設計納入至該套管的構造中,再利用有限元素法進行數據模擬,分析此一套新的設計可能衍生的問題,嘗試將該新設計之下的終端結構最佳化。經由數據模擬分別在正常施工與各種施工不良的情況下,所造成的電場不均勻狀況,並評估添加此層後電場的改善狀況,最後評估此添加此結構是否能通過現行規範的耐電壓試驗。
    本論文所提出的改善方法為研究新的終端結構,此結構可使電纜終端電場較為均勻,降低最大電場值,但本文對於目前已存在的施工缺陷並沒有提出改善的方法。此結構的效果經模擬結果顯示:此一套新的設計結構在假設的各項施工錯誤狀況下皆可以發揮其抑低電場分佈不均的效果,包括正常施工以及各類常見的施工狀況,且在耐壓試驗中,也可有效降低最大電場值。本研究雖然僅執行數據模擬,但模擬結果顯示:此項新設計在電纜終端的非均勻電場之抑低方面,具有應用潛力。


    This thesis investigates the cable terminal fault, focusing on the faults caused by improper termination fabrication work which has been recently recognized as the major root cause for cable outage in Taiwan. The thesis presents a new design concept to reduce the probability of cable terminal outage which intends not to cause any variation on the presently existing fabrication work procedure of cable termination. In addition to the improper fabrication work, other root causes for the cable terminal outage have also been studied in this thesis.
    The new design concept presented in this thesis is by adding an additional semiconductive layer to the cable terminal so that the ununiform distribution of electric field can be effectively reduced. The new design has been tested on the cold-shrinking termination which is presently extensively used in the low and medium voltage of power system. To evaluate the effectiveness of purposed concept, numerical simulation has been done by using the Finite Element Method. Through the simulation, the author intends to find out the optimal design structure for coldly shrunk terminal and also the potential difficulty in future application of the design. This thesis also simulates the electrical field of cable terminals with a variety of improper fabrication works and cable environmental conditions, as well as the ability of the new design to withstand the voltage tests.
    The evaluation shows that the new structural design of cable terminal can mitigate the ununiform distribution of electrical field under the most common improper fabrication works, no matter the cable is operated under the normal operation condition state or under the withstand voltage test. Although the simulation is done only here to verify the effect of the new design, the simulation results show that the design can indeed reduce the vulnerability of cable terminal caused by the improper fabrication work, and has a high potential in the future application.

    中文摘要 I 英文摘要 II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 XII 第一章 緒論 1 1.1 研究背景 1 1.2 研究流程與參閱之論文 2 1.3 具體貢獻 2 1.4 各章概述 3 第二章 電纜與電纜終端構造 5 2.1 電力電纜架構 5 2.2 交流電纜傳輸之特有現象 10 2.3 電纜的直線接頭與終端 12 2.3.1 電纜終端架構.................................... ..................................12 2.3.2 電纜直線接頭架構 16 2.3.3 電纜終端施工流程 16 第三章 電纜劣化現象及有限元素分析法 20 3.1 電纜劣化現象 20 3.2 局部放電原理.................................................................................22 3.2.1氣體絕緣破壞與湯遜理論 23 3.2.2 巴森定律 24 3.2.3 局部放電類型 25 第四章 有限元素分析法 30 4.1 有限元素基本原理 30 4.2 馬克斯威爾方程式 31 4.3 有限元素邊界條件 33 4.4 靜電場支配方程式(Governing Equations) 33 4.5 靜電場的有限元素方程式 35 4.6 COMSOL使用流程 36 第五章 電纜劣化模擬與實際案例模擬 38 5.1 電纜水樹模擬 39 5.2 電纜氣隙局部放電之模擬 43 5.3 因施工不當造成電場劣化之實例模擬 47 5.3.1 預鑄式電纜終端結構 48 5.3.2 預鑄式電纜施工缺陷評估 50 第六章 電纜終端絕緣內部最大電場抑低方法 58 6.1 冷縮式電纜終端結構 58 6.2 添加半導電層前後對電場分佈之改善 58 6.3 施工缺陷評估 64 6.3.1 未塗抹矽脂膏 64 6.3.2 未塗抹矽脂膏且未纏繞半導電膠帶 66 6.3.3 絕緣層未拭淨 68 6.3.4 應力錐定位不良 70 6.4 耐壓試驗評估 73 第七章 結論 77 7.1 結論 77 7.2 未來研究方向 78 參考文獻 79 附錄A 電纜常見材料相關特性係數 82 附錄B 69kV 交連PE電纜規格 84

    [1] N.H. Malik, A.A.Al-Arainy, and M.I. Qureshi, Electrical Insulation in Power Systems, Marcel Dekker, 1999.
    [2] W. A.Thue, Electrical Power Cable Engineering, Marcel Dekker, 1998.
    [3] 高壓單芯交連PE電纜,台灣電力公司材料標準A043 (95-04),民國九十五年。
    [4] 69kV交連PE電纜器材,台灣電力公司材料標準A007(93-02),民國九十三年。
    [5] 預鑄型高壓電纜終端接頭及配件,台灣電力公司材料標準A008(95-08),民國九十五年。
    [6] 預張式高壓電纜終端接頭,台灣電力公司材料標準E056(95-08),民國九十五年。
    [7] 顏世雄,高壓電工程,新學識文教出版中心,民國八十九年。
    [8] 顏世雄、粘孝先、溫坤禮,高壓電工程,全華科技,民國九十二年。
    [9] 廖財昌,高壓電絕緣工程,全華科技,民國八十七年。
    [10] O. I. Gilbertson, Electrical Cables for Power and Signal Transmission, John Wiley, 2000.
    [11] 鄭富雄,25kV高壓電纜接頭之施工與事故分析及防範對策,中原大學電機工程學系碩士學位技術報告,民國九十二年六月。
    [12] 張瑞村,數位局部放電量測應用於高壓電纜終端接頭狀況之評估,國立臺灣科技大學電機工程學系碩士學位論文,民國九十四年六月。
    [13] 中田高義、高橋則雄,電□工□ソ有限要素法(第二版),森北出版株式□社,1982年。
    [14] 高町高雄,有限要素法ソвヨгヨ,森北出版株式□社,1993年。
    [15] 黃昌圳,有限元素法在電機工程的應用,全華科技,民國九十四年十月。
    [16] 黃錦煌、吾佐群,輕鬆易學有限元素分析大師FEMLAB,高立圖書有限公司,民國九十三年八月。
    [17] J. L. Chen, and J. C. Filippini, “The Morphology and Behavior of The Water Tree”, IEEE Transactions on Dielectrics Electrical Insulation, Vol. 28, No.2, April 1993, pp.271-286.
    [18] S. Hvidsten, E. Ildstad, and J. Sletbak, “Understanding Water Treeing Mechanisms in the Development of Diagnostic Test Methods ”, IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 5, No. 5, October 1998, pp.754-760.
    [19] S. Sulaiman, and I. Z. Abidin, “FEM and ANN Based Simulations to Study the Effect of Electrical Field Distribution on Water Tree Affected Polymeric Cables”, First International Power and Energy Coference, PECon 2006, November 28-29, 2006, Malaysia.
    [20] I. Radu, M. Acedo, and J. C. Filippini, “The Effect of Water Treeing on The Electric Field Distribution of XLPE Consequences for The Dielectric Strength ”, IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 7,No. 6, December 2000, pp.860-868.
    [21] P.Das, and S.Chakravorti, “FDM Based Simulation of PD Patterns Due to Narrow Void Considering Stochastic Parameters”, IEEE Power India Conference, 2006, New Delhi.
    [22] M. D. Noskov, and A. S. Malinovski, “Modeling of a Discharging Cavity in a Dielectric Material Exposed to High Electric Fields”, IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 10, No. 3, June 2003, pp.425-434.
    [23] E. Husain, and R. S. Nema, “Analysis of Paschen Curves for Air, N2 and SF6 Using the Townsend Breakdown Equation”, IEEE Transactions on Electrical Insulation, Vol. 17,No4, August 1982, pp.350-353.
    [24] 3M QT-II 冷縮式屋內型電纜終端處理頭施工說明書。
    [25] R. A. Wandmacher, J. A. Morris III, T.s J. D. Heyer, L. c . K. Chor, “New Silicone Cold Shrink Termination”, Transmission and Distribution Conference, 1996, Los Angles, California.
    [26] S .V. Nikolajevic, N.M. Pekaric-Nad and R.M. Dimitrijevic, “A New Concept In Construction of Cable Terminations For Medium Voltages”, IEEE Transactions on Power Delivery, Vol. 13, No. 3, July 1998, pp. 712-717.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE